L5
s 4

The Art of Rails

Fr I-.~.._'|r| | Bprison

AN

WO Lindstes, source coos, and Wiox fachnica! SLnpon Ot W wisLCom

The Art of Rails®

Edward Benson

WILEY
Wiley Publishing, Inc.

The Art of Rails®

Acknowledgments.......cvcuuneuusannusannnsansnsnsnnnnsnnnnnnnnnnnsnnnnsnnnnnnns Xi
Introductionccciiiiiiririeiaransarar s s r s na s a s r s a s r s n R EaaEEnn s Xix
Chapter 1: Emergence(y) ofthe NewWebcciiiiiiiiinanennsnsnanananannsnnnnnns 1
Chapter2: The RailsConceptciiiiiineienenasnnnsnanananasanssnnsnnanannnnns 21
Chapter 3: The Serveras an Application...........ciiiiiiiiiiencrarennsnnnnnanannnnns 45
Chapter 4: Getting the Most fromM, V,andCcccviienenanennsnnnnnanannnnns 59
Chapter 5: Beautiful Web APIsccciiiiiiiinanncnenananenasannsnnnnnnnnnnnnns 89
Chapter6: Resources and RESTcvcvencnenannsnnnnnnnanannsnsnnnnnnnnnnnnnns 115
Chapter 7: The Five Styles of AJAX . ..iuciiiiincinranreannsnnsansasnnnnsnnnnnnsnnsnns 139
Chapter 8: Playing With BIOCKS v cvvcivncinannannannnansansasnnnnsnnnnansnnnnns 167
Chapter 9: Mixins and Monkey Patchingccviiininranrannnannannnsnnnnnnns 197
Chapter 10: Code That Writes Code (That WritesCode)......cvcuvenrnrencnrannnnnnnns 225
Chapter 11: How | Learned to Stop Worrying and Love the Schema 253
Chapter 12: Behavior-Driven Developmentand RSpeccovcvivrencnrannnnnnnns 275

The Art of Rails®

Edward Benson

WILEY
Wiley Publishing, Inc.

The Art of Rails®

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2008 by Edward Benson

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-18948-1

Manufactured in the United States of America
10987654321

Library of Congress Cataloging-in-Publication Data

Benson, Edward, 1983-
The art of Rails / Edward Benson.
p. cm.
Includes index.
ISBN 978-0-470-18948-1 (pbk.)
1. Web site development. 2. Ruby on rails (Electronic resource) 3. Ruby (Computer program
language) I. Title.
TK5105.888.B4524 2008
005.1'17 — dc22
2008012006

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317)
572-3447, fax (317) 572-4355, or online at http: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Website is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Website may provide
or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Rails is a registered trademark of David Heinemeier
Hansson. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com

For Grace

About the Author

Edward Benson is a Staff Scientist with BBN Technologies in Arlington, Virginia. Edward’s work at BBN
includes the design and implementation of agent-based logistics and data processing architectures and
semantically-enabled data recording and processing environments (often called the ““Semantic Web”’). He
is a member of the IEEE and has published papers on both grid and agent computing techniques. Edward
is an experienced web applications developer and a co-author of Professional Rich Internet Applications,
also from Wrox. Edward received his B.S. in Computer Science summa cum laude from the University of
Virginia.

Acquisitions Editor
Jenny Watson

Development Editors
Lori Cerreto
John Sleeva

Technical Editor
Dana Moore

Production Editor
Daniel Scribner

Copy Editor
Susan Christophersen

Editorial Manager
Mary Beth Wakefield

Credits

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Jen Larsen, Word One

Indexer
Robert Swanson

Acknowledgments

My heartfelt thanks go out to the team at John Wiley & Sons — especially John Sleeva and Lori Cerreto —
and to my colleague and technical editor Dana Moore. Your insight, feedback, and hard work have been
paramount to making the book what it is. Thanks also to Carol Long at Wiley for believing in my ideas

enough to convince me that I should write them down as a book proposal.

I could not have completed this book without the help and love of my fiancée, Grace. At times, writing
can be a painstakingly slow and all-consuming process. Her never-ending encouragement pushed me to
write each chapter with the enthusiasm that prompted me to begin the book in the first place.

Thank you to my parents and brother for their support; to my cousin Emily for her fantastic cartoon ren-
derings of W. Web — they didn’t make it into the book, so now we’ll have to lobby Wiley together for The
Art of Rails, Animated Edition; and to Robert Hiedemann for his grandfatherly advice and encouragement
to make education a part of my life.

Thank you to the many friends at BBN Technologies who provided help and advice to make this book
happen: Pete Pflugrath and Bud Sichler for being understanding of my time constraints and being flex-
ible with my work schedule; Troy Self for providing feedback on early chapter drafts; Rob Battle for
being a sounding board for ideas; and Doug Reid, Dave Kolas, Steve Allen, Jeremy Learner, Andrew
Perez-Lopez, Tony Stein, Jonathan Nilsson, and Greg Joiner for providing their thoughts, humor, and
feedback on ideas over the course of writing. (Steve’s reaction to the title: ““The Art of Rails’? Who do
you think you are, Donald Knuth?”)

Several people on the Internet were kind enough to contribute their advice and code bits. Thank you to
Rob Malda for his thoughts on the early days of web application development; Elaine Wherry of Meebo
for her encouragement and feedback on the AJAX chapter; and Scott Raymond for allowing me to use
his RSS 2.0 template for the XML Builder. Thank you, finally, to the many open source developers and
Rails bloggers whose hard labors have advanced web development to the discipline that it is today.

Contents

Acknowledgments xi
Introduction Xix
Chapter 1: Emergence(y) of the New Web 1
Rails, Art, and the New Web 2
Art and Engineering 3
The New Web 3
The Truth about Web Applications 5
Patient History: The World Wide Web 5
From Documents to Interfaces 8
The Decline of Semantics 9
Hello, Web Applications 12
Emergence of the New Web 19
Chapter 2: The Rails Concept 21
One Part Framework 22
The Configuration View 23
The Code View 25
The Process View 26
One Part Language 27
Models on Rails 28
Web-Specific Tasks 30
JavaScript 31
Plug-Ins 32
Two Parts Mindset 32
Web Sites Are MVC Applications 32
Web Applications Are Ecosystems 33
Convention over Configuration 34

A Little Assumption Goes a Long Way 34
Aesthetics Matter 36
Restraint Can Be Liberating 37
You Repeat Yourself Too Much 38

Contents

Testing Isn’t a Choice 40
The Web |s a Set of Resources, Not Services 41
Summary 42
No Silver Bullet 43
Optimize Your Coding Before You Optimize Your Code 43

Chaoter 3: The S Applicati 15

Model-View-Controller: The Abbreviated Version 47
MVC and the Web 48
The MVC Design Process 50
The View Is Your Spec 51
Example: Social Networking for Cooks 51
Managing the Application Lifecycle 55
Think Agile, Not Engineered 55
Think Controlled, Not Organic 56
Beware of Open-Heart Surgery 56
Summary 57
Chapter 4: Getting the Most from M, V, and C 59
The Best APl Documentation Is Free 60
The Model 61
Model Objects Should Understand Each Other 62
Use Exceptions to Make Code Cleaner 64
Mapping from Rows to Objects 67
Polymorphic Associations 68
The World Outside of ActiveRecord 70
The View 70
The Variable Problem 70
Rails-Style JavaScript 72
Partials as Atoms and Molecules 73
Picking the Proper Partials 74
The View Isn’t Just HTML 77
The Controller 77
Reusable CRUD 78
Rails Scaffolding Is a Bunch of CRUD 79
Dealing with Two-Step Actions 80
Knowing When to Outsource 83
Knowing When to Refactor 87
Conclusion 88

Xiv

Contents

Chapter 5: Beautiful Web APIs 89
Two Big Ideas for Web APIs 91
The New URL: Addressing Concepts, Not Files 91
The Application Is the API 93
Routing 93
Anatomy of the Web API Call 96
Overlaying the API 97
The respond_to Method 97
Writing a Non-HTML Result 99
Adding Custom MIME Types 103
Registering Types with Rails 104
Creating Your Own MIME Type 105
API-Metering, the Rails Way 105
Authenticating the User 105
The Metering Algorithm 107
Applying Metering via Filters 108
What about SOAP/XML-RPC Services? 109
Summary 112
Chapter 6: Resources and REST 115
A Web of Resources 116
Identifying Resources 117
Talking About Resources 117
Representing Resources 118
Representational State Transfer 118
HTTP: The Resource CRUD 119
Defining an Application in Terms of Resources 122
Communicating with the Client: Resources as Your API 126
Put Another Way: The Network Is the Computer 127
REST and Rails 128
Mapping Resources in the Router 129
But It’s the Real World: Named Routes are Still Needed 130
Resource Scaffolds 133
Nested Resources 133
Singleton Resources versus Regular Resources 137
Summary 138
Chapter 7: The Five Styles of AJAX 139
The Big Secrets 141
AJAX Isn’t Necessarily the Hard Part 141

XV

Contents

AJAX Introduces Tough Design Issues 141
You Have Your Pick of JavaScript Frameworks, Even in Rails 143
The Five Styles of AJAX 144
Proxy Style 146
Partial Style 148
Puppet Style 149
Compiled-to-Web Style 151
In-Place Application Style 153
AJAX as Just Another API 155
Rails-Style AJAX 157
Partial-Style AJAX Controllers (and AJAX CRUD) 157
Puppet-Style AJAX Controllers (and RJS) 160
Elegant Degradation 162
Moving Backward from the Partial-Style 163
Moving Backward from Rich User Interfaces 164
Summary 165
Chapter 8: Playing with Blocks 167
The Block Mindset 169
Comparing Methods, Procs, and Blocks 173
Methods 173
Procs 177
Blocks 179
Moving Between Blocks and Procs 180
The Big Scope Experiment 181
Experiment 1: Blocks Are Affected by Changes in Their Source Environment 182
Experiment 2: Blocks Can Affect the Environment from Which They Came 184
Block Patterns, Blocks in Rails 186
Iteration 186
Aspect-Oriented Programming 187
Building Output in HTML and XML 192
Dual-Use Functions 194
The Callback 194
Summary 195
Chapter 9: Mixins and Monkey Patching 197
Mixins 199
Organizing Code into Modules 199
Methods in Modules 201
Mixing Modules into Classes 202
Mixins in Rails 205

XVi

Contents

Monkey Patching 210
Eval: The Interpreter’s Back Door 211
Eval’s Two Siblings 213
Good Monkey Patching Technique 219

Summary 222

Chapter 10: Code That Writes Code (That Writes Code) 225

Dynamic Code and DSLs Revisited 227
Code-Writing Macros 228
Creating Methods on the Fly with define_method 228
define_method Example: The Pentagon and the Kremlin 229
Scope and define_method 230
Using define_method for Rails Macros 232
Macro Summary 234
Calling Methods That Don’t Exist: Objects That Adapt to the Way You Use Them 234
Some Basic Examples 236
Example: A Shortcut for Array.each 237
Beware of Catching Everything 240
method_missing Patterns 241
Implementing method_missing Patterns 242
Reflection 248
Variables and Constants 249
Methods 250
Modules 251
Summary 252
Chapter 11: How | Learned to Stop Worrying and Love the Schema 253
Bringing the Database into the Picture: The LAMP Stack 254
Thinking in Migrations 256
Writing Migrations 257
Performing Schema Migrations 259
Team Schema Development 260
Seeding Data for Production 262
Small Datasets: Seed Migrations 262
Medium Datasets: Seed Fixtures 263
Large Datasets: Dumpfiles 264
When a Database Isn’t Enough 266
Model Object Hierarchies 266
Storing Lists, Hashes, and Other Fun Things 271
Custom Getters and Setters 272
Summary 273

xvii

Contents

Chapter 12: Behavior-Driven Devel t and RS 275

Behavior-Driven Development
RSpec: BDD for Ruby and Rails
The Spec Development Cycle
Writing the Spec
Implementing Examples
Matchers
Custom Matchers
Before and After
An Example Trip through the Development Cycle
Part 1: Writing The Story
Part 2: Writing the Specs
Part 3: Initializing and Writing a Basic Test
Part 4: Writing Behavior Tests That Motivate Development
Part 5: Completing the Behavioral Test Implementations
But Wait, There’s More
Summary

Index

xviii

276
279
279
280
281
282
285
287
288
288
288
290
291
293
295
296

297

Introduction

There is a certain state of mind, a certain transient condition that arises, where everything seems to
resonate and effort becomes effortless. Athletes call it being in the zone, some others call it flow. Flow has
nothing to do with triumph or accomplishment; it isn’t the product of your labors. Flow is the merging
of a watchmaker and his watch or an artist and her paints.

The dot-com bust was a confusing time for web development, but rising from the burst dreams of instant
wealth, something strange and exciting happened. The web development community as a whole reached
a kind of flow. In a world filled with duct-tape solutions and proprietary formats, suddenly web devel-
opers were clamoring for standards compliance, for elegance and simplicity. And it wasn’t just to fend
off browser compatibility issues, but because the code looked beautiful.

Through the fits and starts, the competing ideas, and the explosion of development frameworks that
followed, an identity began to emerge. This identity is as much a philosophical statement about what
the web could be as it is a technical statement about how to accomplish those goals. This identity is still
emerging, and there are still many problems to be solved, but one thing is now certain: web application
development has come of age as a rich discipline of programming that stands up on its own.

Ruby on Rails is just one part of this much larger story, but in many ways it is the symbol of this coming
of age. Rails challenged the web development community to rethink what it meant to build a web appli-
cation. It provided an entire application ecosystem when most developers were embedding their code
inside HTML files. It made unit testing not only easy but also cool, and did so at a time when debug-
ging web applications was, at best, a black art. It introduced a new generation of web developers to the
ideas of meta-programming and domain-specific languages. And, most of all, it found the voice of the
change that was taking place: that the web provides a natural and elegant architecture on which to write
applications if only we can create the right metaphors to harness it.

What Is the Art of Rails?

Any programmer knows that an API is only half the story, and with Rails this is especially true. Good
Rails development, and good web development, is much more about the design choices you make than
the framework you have at your disposal. I wrote this book as an attempt to create the resource I wish I
had after settling into Rails development — to pick up where the API leaves off and explain how to take
good Rails code and turn it into beautiful Rails code: simple, effective, reusable, evolvable code.

This book is meant to take your Rails development to the next level, and in doing so, it cuts across a
wide range of topics. Each of these topics is selected to highlight a particular part of the design and
development process that can make the difference between just using the Rails framework and achieving
a state of flow with the framework. Throughout the book, the focus is on the way you code rather than the
mechanics of coding. The book is divided into clusters of chapters that represent the themes listed in the
following sections.

Introduction

Development Philosophy of the New Web

Chapters 1 and 2 discuss the changes in style and focus that have taken place since the web’s inception.
Chapter 1 presents a brief history of the evolution of web development, with a focus on interpreting
that history as it relates to the changes that impact our lives as web developers today. Many aspects of
the modern web application architecture were shaped by earlier programming styles that can still play
invaluable roles in analyzing your design and code. This chapter gives names to some of these styles,
such as code-first development and document-first development, to cast light on some of the design
decisions that we are faced with today.

Chapter 2 presents Ruby on Rails as “one part framework, one part language extension, and two parts
state of mind.” It picks apart Rails from each of these angles so that you can see how it all fits together
mechanically, stylistically, and philosophically. When you are starting out with Rails, just understanding
the mechanics of writing a Rails application is sufficient, but as you advance in your skill, a deeper
understanding of how the framework fits together is necessary. This holistic presentation of the Rails
architecture highlights some of the concerns that you should be factoring into your code as you become
a more seasoned Rails developer.

Advanced Tricks and Patterns for MVC Development

Chapters 3 and 4 focus on getting the most from the MVC paradigm. Strict adherence to MVC is one
of Ruby on Rails’ most prominent contributions to web development, but the benefits you get from this
code-organization structure can vary widely based on how you choose to organize the code within it.
Chapter 3 discusses the MVC design process, including the steps for organizing your design work, a
plan for decomposing functionality into the right objects, and guidance on refactoring your code.

Chapter 4 focuses on the implementation side of MVC with the goal of making your code as clear and
concise as possible. It provides guidance on how to divide your implementation between the model
and controller layers for maximum reusability and seamless error-handling, provides examples of
aspect-oriented programming, and shows you how to decompose your HTML code so that you'll never
have to repeat yourself, among other things.

Read-Write Web: APIs, Resources, and REST

Chapters 5 and 6 focus on the emerging web application architecture and what this means for APIs,
resources, and REST (Representational State Transfer). Chapter 5 shows how to design web applications
so that API access is overlaid on top of your web controllers from the very start, and it provides tech-
niques for metering API access and managing multiple data formats. Chapter 6 introduces the idea of
resources, one of the foundational metaphors for the future of web development, and presents the REST
application architecture. REST both guides your design toward a simple and consistent style and centers
your application’s operations around a growing standard on the web that supports interoperability and
sharing between web applications.

AJAX Patterns

The wealth of full-featured JavaScript frameworks today means that the hard part of AJAX is no longer

AJAX itself, but all the design issues that begin to arise after you have decided to go that route with your
UI design. Chapter 7 presents five different AJAX design patterns that characterize different approaches
to AJAX integration. It elaborates in depth two of these patterns — partial style and puppet style — that

XX

Introduction

are particularly effective in Rails applications, and it shows how to integrate these styles of AJAX into
your application without losing the simplicity and reusability of your design.

Advanced Ruby and Meta-programming

Much of the style of Ruby on Rails would not be possible without the Ruby language. Chapters 8, 9,
and 10 focus on some of the wonderful advanced features of Ruby that make it so different from other
languages. You will learn how to think and design in ““blocks” and discover several design patterns that
blocks make possible, such as adverb-based programming, creative APIs, and code wrappers. Chapter
9 dives into mixin-based development and monkey patching. You will learn how to change the imple-
mentation of an object after it has been loaded in memory and will see how to use this technique to
refine the way the Rails framework behaves. Chapter 10 teaches you how to use message passing and the
method_missing method to create introspective and dynamic APIs such as ActiveRecord.

Group Schema Development and Behavior-Driven
Development

Chapters 11 and 12 address topics outside the “application’”” component of web applications. They show
you how schema development and code testing can become integral driving factors in your design
and development process. Chapter 11 discusses topics in data management, focusing primarily on
ActiveRecord migrations and how to manage your migrations over the life span of a project and work-
ing with a large team of members. It also dives into other database-related challenges, such as techniques
for seeding production data and encoding complex object models within relational schemas. Chapter 12
presents behavior-driven development (BDD) and a framework called RSpec that implements it. BDD is
a reconsideration of test-driven development that is taking the Rails community by storm. You'll have to
turn to the chapter to find out why!

Whom This Book Is For

This book is for any developer who has a basic understanding of Ruby on Rails and is looking to expand
his or her skills to become a seasoned Rails designer. Ideally, you have written a few toy applications
and have a general familiarity with the key features that Rails is known for — routing, models, views,
controllers, associations, validations, layouts, and partials. This book provides short refreshers when
these core concepts come up, but quickly moves on to higher-level discussions about how to best use
these concepts for effective development.

Although this is a Ruby on Rails-centric book, many of the topics contained within are relevant to

any developer who wishes to understand the techniques and design patterns that thrive on modern
MVC-style web frameworks. As such, it is a good resource for developers wanting to learn the “Rails
style”” even if their target platform is something else. As has been said on the web more than a few times,
learning Ruby on Rails is a great way to become a better PHP developer.

What’s Up With the Stories?

Each chapter begins with a story about a fictional character named W. Web who gets caught up in an
adventure that spans the book and ends online at both the book’s companion web site (www.wrox.com)

XXi

Introduction

and at www.artofrails.com. Each chapter’s segment of the story roughly aligns with the overall topics
and themes of the chapter — some blatantly and some a bit more subtly.

I wanted to add a storyline to the book because I believe that a book so heavily concerned with design
should be something that you can read cover to cover rather than something that just serves as a refer-
ence. Writing each installment of W. Web’s adventure was a way I could remind myself of that goal at
the start of each chapter. My other, much simpler motive was that it was fun. The most entertaining tech-
nical book I have ever read is Why's (Poignant) Guide to Ruby (http://poignantguide.net). Although
this book lacks Why'’s crazy cartoons and chunky bacon, the stories were lots of fun to write and, I hope,
will be fun for you to read.

Conventions

To help you get the most from the text and keep track of what’s happening, I've used a number of con-
ventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks and asides to the current discussion are offset and placed in italics like this.
As for styles in the text:

Q I highlight new terms and important words when I introduce them.

0 I show filenames, URLs, and various code elements within the text like so:
persistence.properties.

O I present code in two different ways:

I use a monofont type with no highlighting for most code examples.

I use gray highlighting to emphasize code that's particularly important in the present
context.

Source Code

Good code is concise, sometimes startlingly so, and Rails allows you to program at your best. This book
consciously attempts to steer clear of large code examples in favor of small, targeted segments of code
to demonstrate a particular point or technique. This keeps the signal-to-noise ratio high, and keeps the
focus on what is meaningful about the technique and when you might want to use it.

Any code examples long enough to be run in a stand-alone fashion can be found online for your con-
venience in the source code files that accompany the book. This code is available for download at
http://www.wrox.com. When you're at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click the Download Code link on the book’s detail page.

Because many books have similar titles, you may find it easiest to search by ISBN. This book’s ISBN is
978-0-470-18948-1.

XXii

Introduction

After you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download. aspx
to see the code available for this book and all other Wrox books.

Errata

I make every effort to ensure that there are no errors in the text or in the code. However, no one is perfect,
and mistakes do occur. If you find an error, such as a spelling mistake or faulty piece of code, I would be
very grateful for your feedback. By sending in errata, you may save another reader hours of frustration
and at the same time you will be helping me provide even higher-quality information.

To find the errata page for this book, go to http: //www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page, you
can view all errata that has been submitted for this book and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send me the error you have found. I'll check the information and,
if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of the
book.

p2p.wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as you
read this book but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

After you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxiii

Emergence(y)
of the New Web

W. Web knew immediately that something was wrong. He had suffered stomach pangs before, but
never like this. Stumbling out of the taxi cab and toward the hospital, he mopped the sweat from his
brow and pushed his way through the sidewalk traffic.

Inside, everything was a dizzy blur flowing past him — nurses, patients, a police officer, and several
computer technicians hitting a computer monitor and mumbling something about the Internet going
down.

“I know, I know!” Web thought as he struggled past them for the emergency patient entrance.

Luckily for W. Web, this particular hospital uses a triage system, and when you explain to the nurse
at the front desk that you are the Internet, you get bumped to the front of the line. A lot is riding on
your health.

As Web lay in his hospital gurney, passing other familiar technologies as the nurse pushed him down
the hall, he realized that he had made the right decision to stop ignoring the pangs. It was going to
be okay.

This book will make you a better web application developer. And if some of the pundits with
crystal balls are to be believed, we’re all on the path to becoming web application developers. More
specifically, this book will make you a better Ruby on Rails developer. It assumes that you have
written code using Ruby on Rails and now you are thirsty to understand how to design with Ruby
on Rails and how to master the elements of Ruby that make it so successful.

The web is a strange medium for application development. Web applications can’t run by them-
selves, they have little access to a machine’s hardware and disk capabilities, and they require a
menagerie of client and server software providing them with life support. Despite all this, as you
probably already know or are beginning to learn, the Web is a wonderful and exciting place to be
developing applications.

Chapter 1: Emergence(y) of the New Web

Programming for the Web is a blend of art and engineering. Its odd quirks and demands can be har-
nessed to create applications out of clean, concise, elegant code with minimal waste. This book will show
you how.

Programming for the Web is also a task in which good design skills can be the most critical part of a
project because of the lack of features such as compilation and type checking found in the desktop world.

Web applications aren’t programs; they are ecosystems. For each separate task, a separate language is
called upon: SQL for data persistence; Ruby and others for application logic; HTML for UI structure;
CSS for Ul appearance; and JavaScript for UI logic. Good design skills must extend past the knowledge
of each individual area and incorporate the ability to coordinate all areas. On top of all that, the rise of
web APIs and RESTful endpoints enable yet another ecosystem of web applications to communicate with
each other and exchange services, adding another layer of abstraction that is built upon the ones below.

The Web is here to stay, and its potential will only grow as a development platform. As Internet access
approaches utility-like status, as telephone and television did before it, the distinction between your
hard drive and “the cloud” will blur to the point that the two are functionally indistinguishable. With
the exception of maybe games and media editors, applications on the Web will be every bit as powerful
as those once deployed on CDs and DVDs, but these new applications will be easier to code, faster to
deploy, and will harness the combined intelligence of swarms of users to enrich their experience.

These changes are already taking place. In 2007, the primary process for both the Democratic and Repub-
lican parties included a presidential debate with a new twist: Questions for the candidates were asked
via YouTube videos submitted by ordinary people through the Web. Web front ends for our banks,
stocks, and bills are now considered requirements instead of features. It is no longer surprising to store
data that we own, such as our documents and photos, to web applications such as Google Docs and
Flickr — space leased for free in exchange for a bit of advertising. The Web is no longer just about
fetching documents; instead, it has become a universal communications medium for both humans and
software.

If you are here reading this page, then you see these changes taking place. The question that remains is
how to best understand and take advantage of this new development medium.

This book aims to be a blend of design and programming. It takes a critical look at what makes the
modern Web tick from the standpoint of Ruby on Rails. The chapters touch on a wide range of topics,
from REST-based web design to domain-specific languages and behavior-driven development. All these
topics represent the cutting edge of thought about web development and will become cornerstones of the
web of applications that will flourish over the coming years.

At times throughout the book, the code will be sparse; elsewhere, it will be frequent. In all chapters, long
code examples will be avoided in favor of small code examples interwoven with the text to demonstrate
an idea. This is a book primarily about concepts, not syntax.

Rails, Art, and the New Web

No development framework understands the new Web better than Ruby on Rails. In a world of general-
purpose languages applied to the Web through libraries and Apache modules, Ruby on Rails was the
application framework to speak the Web language as its native language. Rails is both a programming
framework and a style of development reflected by that framework.

Chapter 1: Emergence(y) of the New Web

Ruby on Rails embraces the latest thoughts in web design so thoroughly that in many cases it literally
forces you to use them. Most other frameworks don’t have this option — they have been around so long
that entire industries built around them require legacy support. As a newcomer to the scene, Rails is in
the unique position of being able to cherry pick both its features and the way that it exposes them to
the developer, unifying the framework around these choices. Remember when Apple ditched the floppy
drive? It’s like that.

This our-way-or-the-highway approach is a bit brazen, but it has a wonderful effect: It yields a
remarkably clean framework that makes writing high-quality code in very little time easy. Most of the
“housekeeping” involved in writing a web application is done for you by the framework, and the rest
of your coding tasks are assisted by a host of helper functions and code generators (both code-time and
run-time). This means that good Rails developers can spend their time focusing on design-related issues
rather than writing code, making sure that each line written is effective and appropriate.

But Ruby on Rails is still a tool, and as with any other tool, it can be misused. Tools that make a point of
being simple to use often lull their owners into a false sense of security. The quick learning curve creates
the illusion that there isn’t anything else to it. Rails, and the Ruby language, are known for being concise,
but tidy code doesn’t come for free.

Art and Engineering

This book will teach you the finer points of designing and coding in the Ruby on Rails environment — the
points that will transform Ruby on Rails from an easy-to-use web tool into a methodology of program-
ming in which every design choice you make is purposeful. Ruby on Rails is a particularly good platform
on which to practice this type of purposeful, artful programming because of the way it cuts out the fat in
web development to leave only your design remaining.

Software development takes on an inherently artistic quality when the developer truly understands
the environment he or she is working in and the tools that are available. Conversely, if you have ever
watched a watercolor painter work, you know that art has a lot of engineering in it. Watercolor paintings
are intricately designed in advance because each brush stroke can only add to, rather than replace, the
color beneath it. Intricate protective masks are applied and layered with the precision of an Intel engineer
layering the metal on a silicon wafer.

Ruby on Rails operates with this level of attention to the environment of web development — a level that
extends beyond engineering and into art. This book attempts to address the higher-level web application
design issues with this same level of attention. With a solid framework underneath and good design
skills guiding your programming, your development will become both productive and fun, and these
qualities will be reflected in the software that you write.

The New Web

The days of version numbers seemed over when Microsoft Windows suddenly jumped from version 3.11
to 95 overnight, and then advanced 1,905 product releases forward to 2000 in the span of just five years.
So what a throwback it seemed when the masses collectively announced that the Web was versioned,
too, and it had reached 2.0.

Web 1.0 describes the web as a digital version of the traditional publish-subscribe media model in which
a few groups produce content while the majority of users passively consume it. Web 2.0 is a correction

3

Chapter 1: Emergence(y) of the New Web

of this imbalance. Web 2.0 applications provide environments in which users can create and publish
their own content without having to create and maintain web sites by themselves. Applications such as
Blogger, Flickr, Digg, Wikipedia, YouTube, and Facebook turn over the bullhorn to their users, and in
doing so have toppled traditional assumptions about the media industry.

Foreshadowed by the prevalence of APIs on the Web today, Web 3.0, as many are calling it, will bring
a layer of automated reasoning and programmability to the Web. Semantic search engines will be able
to answer questions such as “which flights will get me to Seattle before lunchtime tomorrow’” instead of
simply suggesting web sites associated with the topics “flights,”” ““Seattle,” and “lunch.” These engines
will be able to sift through the Web as a data set, piecing together bits from multiple web sites using
semantic markup to align the meaning of the data elements of each. This roadmap for the Web is shown
in Figure 1-1.

Web 1.0 Web 2.0 Web 3.0

Friendly
Robot Goes
Here

Producers ~ Consumers Producers Consumers Producers Consumers Hal 3000
Figure 1-1

Another story is taking place beneath the media headlines and business models, and that is what this
book is all about. A true renaissance of web development techniques is making the new capabilities

of the Web possible. These advances are breaking long-held assumptions about the way web sites are
developed and are introducing a completely new discipline of application development. In the world of
web developers, each new “version” of the Web reflects a maturing of the art of web development as a
discipline.

On the client side, Web 2.0 represented the push for refinement and tidying up of web formats, turning
what once was a document markup language into a full-blown client-server application platform. This
new platform was made possible because the web development community chose to place a high value
on excellence in coding. XHTML and CSS validation icons were displayed as badges of honor at the
bottoms of web sites, and the tutorials filling the Web focused on getting rid of the endless TABLE tags
that clogged auto-generated HTML and on moving instead to simple, hand-crafted XHTML designs
decorated entirely via CSS.

On the server side, the changes included new ideas about the ways frameworks should interact with
developers, new interpretations of how URLs represent a web site’s capabilities, and the incorporation
of traditional application programming techniques into web development. In the chapters ahead, you
will see how Ruby on Rails is at the forefront of many of these changes and how to incorporate them into
your own development.

As the technologies of the Semantic Web are refined, Web 3.0 will be made possible by the introduction of
resource-oriented development techniques in web development. The REST development style in Chapter
6 will teach you resource-oriented web design, which is the first step in this process. REST-based web
design paves the way for formal modeling and reasoning systems to be directly integrated into our web
applications, combining modern web design with the Semantic Web vision of an interlinking web of data
and logic. So what is the “New Web”’? The New Web isn’t one particular set of technologies or content

Chapter 1: Emergence(y) of the New Web

models. It is the continued evolution of the art and challenge of web design toward more capability and
richer user experience. Web development has come a long way since the early days of CGI scripts and
Mosaic, and it is here to stay as the medium through which a new environment of network applications
will be born.

The Truth about Web Applications

Unfortunately, these exciting developments on the Web have a catch, and that catch is vitally important
to anyone who wants to design good web applications today. The truth is, the Web was not originally
designed to be an application platform in the way we are currently using it. As is the spreadsheet, the
web is a victim of its own success. It proved to be such a fundamentally simple but flexible tool that its
users bent and pried it into increasingly complex roles over the years. Today, we have full-featured web
applications displacing the roles of the traditional media and software industry, but these applications are
built on top of an architecture that has grown organically over 15 years of development. Web applications
are the unexpected child of HTTP and HTML.

This history means that today’s applications are still framed and bound by many of the design choices
made in the early 1990s when the Web was solely a document publication system. Because we’ve all been
caught up right along in the momentum, many of the oddities created by this fact never received much
attention from the scripting community until Ruby on Rails came along; they just seemed to be natural
characteristics of the web development environment.

Understanding the unexpected evolution of web applications is essential to understanding how to design
a good one. Much of the cutting edge of web design is centered on the idea of returning to the roots of
Berners-Lee’s original ideas for certain components of web application design while throwing some of
our original assumptions out the window in other areas. So although the rest of this book will explore the
new world of Rails-based web application development, the rest of this chapter focuses on the evolution
of the web from the eyes of a developer.

Patient History: The World Wide Web

For all its short history, the Web has been about documents. When Sir Tim Berners-Lee, then employed
at the CERN laboratory in Switzerland, created the Web, he was looking for a way to publish and
cross-reference project information throughout his lab.

Those were the Dark Ages of computing, when dragons and wizards roamed the net and no two com-
puter architectures could really interoperate. A universal document format that was both hand editable
and included the ideas and functionality coming out of the hypertext community at the time would be
an enormous improvement to the then-current way of working. Equally important to Berners-Lee’s idea
was a browser for this new system, which would manage the download and display of these documents
automatically, allowing users to follow links from one document to the next.

Berners-Lee had had experience with hypertext before. He had developed a hypertext editor to manage
local webs of documents called Enquire, named after a book he received in his childhood titled Enquire
Within Upon Everything. In his book Weaving the Web, Tim Berners-Lee describes his early vision for the
Web: an Enquire-like hypertext editing system that was not bound to a single computer.

My vision was to somehow combine Enquire’s external links with hyper-
text and the interconnection schemes I had developed for RPC. An Enquire

Chapter 1: Emergence(y) of the New Web

program capable of external hypertext links was the difference between
imprisonment and freedom, dark and light ... anyone browsing could
instantly add a new node connected by a new link. The system had to have
one other fundamental property: It had to be completely decentralized.

To facilitate this architecture, Berners-Lee and his colleague Robert Cailliau developed the two technolo-
gies that continue to fuel the Web today:

a HTML — A language to structure documents and the links between them

QO HTTP — A protocol for storing and retrieving documents on servers

Equally important, they left us with a legacy of how to think about the web: The web as a distributed
document (resource) repository.

Although today the World Wide Web is a virtual world of interaction on the Internet, back then it
consisted of two executable programs that Berners-Lee and Cailliau developed for the NeXT system:
Worldwideweb, the client, and httpd, the server. The Worldwideweb program was a hypertext document
editor with a catch: The documents it loaded were specified using Universal Document Identifiers (UDIs,
now called URIs) rather than traditional file paths. These UDIs contained both a network host name and a
path on that host to specify a file. This meant that in contrast to normal programs, Worldwideweb allowed
users to open, edit, and save hypertext documents that were anywhere on the attached network.

The accompanying httpd server was responsible for making documents available for remote viewing
and editing with the worldwideweb client. A later version of the WorldwideWeb browser is shown in
Figure 1-2 (from http://www.w3.org/History/1994/WWii/Journals/CACM/) after support for features
such as in-page images had been introduced. (The original version could display images, but only as
documents themselves, not inline within a hypertext document.)

Voriavadeyioh | Unks
info Mark al) Alim’s Home) Page
Navigate Mark selection M My home page

Document Link to marked L
Linkto New 1| altas
Uniink 2 [The Wortd-Wide Web Virtual Library: Subject Catalogue X

Link to file:

el L
he WWW Virtual Library
o

o
High-Energy Physics Information
o _[=i CERN Welcome:

Find
Eait

Links

style

Print

Page layout
Windows
semvices
Hige

quit

== - ElEEE

e an

3
5
o This is a
]

Mail to
to add pol
adninist

. CERN Experiments

See also

Experiments

Aeronau

Agriculty W Support for Experiments
I
K| European Laboratory for Pary ALEPH LEP experiment
=

Geneva, Switzerlan ALICE # Large lon Collider E:
LHC

o
& Toraigal LHC Appar|

Anthropolog CHORUS

Wags - Neuting oscil
fuchseclogy | |About the Laboratory: CERN

Compact Muon Seleng

|l
- oncemnimn fy

Asian Studies

i ‘
Astronomy and _I General infarmation, divisions. groups and activities, scientific

Separae I

Bi Sciences

Separate list

Figure 1-2

Chapter 1: Emergence(y) of the New Web

The pencil-sketch that Berners-Lee drew in his funding proposal shows a web of concepts, not just
documents, interlinked across the network (much like the modern vision of the Semantic Web). But the
Web that was immediately needed materialized as a web of published documents. These documents lived
on a virtual distributed file system composed of every Internet-accessible computer running the httpd
server. All that was needed was a URI to specify the server and file path, and any published document
in the world could be pulled up, read, edited, and saved back to the httpd file server. This basic model is
shown in Figure 1-3, a figure that will evolve as the chapter progresses.

http://host/path/document.html
Request >

Response <

document.html

Figure 1-3

If we can characterize the World Wide Web’s original behavior as similar to that of a worldwide filesys-
tem, then HTTP is this filesystem’s API. The HyperText Transfer Protocol was the mechanism that
Berners-Lee designed for performing the operations that one might want to perform on a set of remote
files. A working draft of the HTTP specification from 1992 contained 13 method calls in this API, but by
the late 1990s, web developers used only two or three with any frequency, and much of these methods’
original meanings had disappeared. The following table lists the four primary methods in HTTP com-
monly used by web developers today — GET, PUT, POST, and DELETE — and includes a summary of their
meanings as defined by the HTTP 1.1 specification.

Method Definition

GET The GET method means retrieve whatever information is identified by the Request-URI.
If the Request-URI refers to a data-producing process, it is the produced data which
shall be returned as the entity in the response and now the source text of the process,
unless that text happens to be the output of the process.

POST The POST method is used to request that the origin server accept the entity enclosed in
the request as a new subordinate of the resource identified by the Request-URI in the
Request-Line. POST is designed to allow a uniform method to cover the following
functions:

— Annotating existing resources

— Posting a message to a bulletin board, newsgroup, mailing list, or similar group of
articles

— Providing a block of data, such as the result of submitting a form, to a
data-handling process

— Extending a database through an append operation

The actual function performed by the poST method is determined by the server and is
usually dependent on the Request-URI. The posted entity is subordinate to that URI in
the same way that a file is subordinate to a directory containing it, a news article is
subordinate to a newsgroup to which it is posted, or a record is subordinate to a
database.

Continued

7

Chapter 1: Emergence(y) of the New Web

Method Definition

PUT The pUT method requests that the enclosed entity be stored under the supplied
Request-URI. If the Request-URI refers to an already existing resource, the enclosed
entity should be considered as a modified version of the one residing on the origin
server. If the Request-URI does not point to an existing resource, and that URI is
capable of being defined as a new resource by the requesting user agent, the origin
server can create the resource with that URIL

The fundamental difference between the PoST and PUT requests is reflected in the
different meaning of the Request-URI. The URI in a POST request identifies the resource
that will handle the enclosed entity. That resource might be a data-accepting process, a
gateway to some other protocol, or a separate entity that accepts annotations. In
contrast, the URI in a PUT request identifies the entity enclosed with the request — the
user agent knows what URI is intended and the server must not attempt to apply the
request to some other resource.

DELETE The DELETE method requests that the origin server delete the resource identified by the
Request-URL

From this early draft specification, it is clear that the Web was designed as a distributed document archi-
tecture, and all the action was taking place in the HTTP protocol. This Web did not just fetch HTML
documents for display, it natively allowed editing and creating, too. New resources could be created with
the PUT and POST commands, existing resources could be edited with the PUT command, and resources
could be viewed with the GET command. The Worldwideweb software served as the document viewer
and editor for these resources, like a Wiki implemented at the level of HTTP. For example, the following
request might be used to change the text of the welcome page to a personal web site:

PUT /welcome.html

<HTML>

<HEAD>

<TITLE>Home Page -- Edward Benson's Site</TITLE>

</HEAD>

<BODY>

<H1>Edward Benson's Web Page</H1>

<P>Welcome to my home page! I just modified it with a PUT request!</P>
</BODY>

</HTML>

The Web seemed set to provide a distributed document architecture as it spread across the Internet. What
Tim Berners-Lee could not have expected was how interpretations of its features would change as the
Web moved into the wild and researchers all over the world began making modifications and additions
to the web architecture to meet their needs.

From Documents to Interfaces

The first group to dive headfirst into the web was the National Center for Supercomputer Applications
at the University of Illinois. Its team included the gang of developers who developed Mosaic, the first
web browser for the masses and who later went on to form Netscape. Although Tim Berners-Lee was

Chapter 1: Emergence(y) of the New Web

responsible for creating and incubating the idea of the World Wide Web, these developers — people
such as Marc Andreessen and Eric Bina — are largely responsible for making it a household name.

A great deal of power rests in the hands of whoever writes the interpreter for a computer language
because that person or group has unilateral ability to add, remove, or change the way the language is
translated into actions by the computer. Microsoft, for instance, is notorious among web developers for
single-handedly mutating the way web pages had to be constructed by implementing a flawed rendering
engine in early versions of the Internet Explorer browser and then failing to fix the bugs as the versions
progressed. The sheer size of the IE market required web developers to treat the exceptions caused by
IE’s bugs as the new rule. As the web grew in the early 1990s, the Mosaic team had even greater influence
by the nature of its role as the keeper of the first mainstream browser.

Two powerful features that the NCSA Mosaic team added to its browser were the ability to display
images within HTML documents and the ability to embed forms inside a web page. At the time, these
features were controversial in the research community from which the Web came, but their introduc-
tion was a result of real-world need rather than research, and they were powerful additions to the web
architecture.

Retrospectively, the introduction of IMG and FORM tag support into NCSA Mosaic was a symbolic event
that shaped the future of web development. These two tags set the Web down the path of hosting applica-
tions rather than just documents. The IMG tag represented the shift of the Web away from an environment
consisting only of information and toward an environment in which presentation played a key role. The
FORM tag represented the shift of the HTML language as a passive medium for information conveyance
toward a transactive medium used to facilitate remote database operations. The transactive capabilities
that the FORM tag enabled also marked the beginning of what would eventually become a complete inver-
sion of control between HTML (the application layer) and HTTP (the transport layer). Although HTTP
was once the layer at which information was created and modified, forms allowed HTML to slowly take
over and become the place where the real action occurred, leaving HTTP as just the transport mechanism
to tunnel data between web forms and the form processor.

The Decline of Semantics

The use of the Web to convey rich document layouts and form-based application interfaces shifted HTML
and HTTP away from their original use and semantics. Tags such as IMG and FoRrM allowed web docu-
ments to be so much more than just informational documents: They could be company home pages, rich
advertisements, magazine articles, or user surveys. Similarly to parents of a growing teenager, the origi-
nal designers of the web could only watch, sometimes with pride and other times with disappointment,
its shifting nature as it was adopted and put to use throughout the world.

The Web, as defined by empirical use, broke from its original design and semantics in both of its two
major components, HTML and HTTP. Namely,

QO HTTP was reduced to only the GET and PoST commands in popular use.

QO HTML became a display language.

HTML and the Rise of Pages

What began as a language for describing documents quickly became a language used to describe rich
page layouts and rudimentary application interfaces. Driven primarily by commercial interests, but

Chapter 1: Emergence(y) of the New Web

also by academics excited by a new way to expose an application’s functionality to their peers, HTML
proved an effective way to produce a particular visual rendering on the client’s screen that conveyed
aesthetics and branding in addition to structured information. The Web was no longer a repository for
just documents; now it hosted “pages,” functioning like a digital magazine.

Until stylesheets were developed later in the 1990s, using HTML as a language for Ul layout wasn’t
pretty. The tags in HTML reflect its intent as a document markup language; they are structures of typog-
raphy rather than layout, such as paragraphs and headings, boldface and italics. But with no choice other
than to use HTML, web “page” developers began hacking their designs out of its original structures.
Of all the tags hacked for the purpose of visual design, the TABLE tag became the most important (and
abused).

The TABLE tag began as an innocuous way to record tabular data. (Makes sense, right?) But a table and its
cells also carry with them a certain spatial presence useful for arranging items on a page. Web browsers
also supported the ability to specify such properties as border color, height, and width, and so the TABLE
tag quickly became the staple for constructing user interfaces. Oh, was it painful. With sheer willpower,
developers used the flexibility of this tag to coax the Web into a visual medium of its own, but at the
expense of readability:

</td></tr></table></td></tr></table>

<br clear=all>

<table border=0 width=180 cellpadding=1 cellspacing=0 bgcolor=#708090 >
<tr><td>

<table width=100% border=0 cellpadding=4 cellspacing=0 bgcolor=#708090>
<tr><td bgcolor=#ffffff valign=top>

<table border="0" width="100%" cellspacing="0" cellpadding="0">

<TR><TD ALIGN=center CLASS=small BGCOLOR=#FFFFDD>

<table bgcolor="EDEDED" border="0" width="100%" cellspacing="0" cellpadding="0"
hspace="0" vspace="0"><tr>

<td align="center">

This use of HTML as a display language created the web page metaphor that we have today, so, without
a doubt, it was an important and exciting building block toward current web applications. But it came
at a cost: HTML lost its semantic meaning as a conveyer of documents and became nothing more than an
ASCII-based serialization for user interfaces.

Following the dot-com boom of the 1990s, a movement swept across the Web to kick the habit of HTML
as a display language and return web design to its roots. This movement, made possible by the spread of
CSS to all the major browsers and the development of more evolved versions of the HTML language, is

why the TABLE tag as a Ul structure is now largely a distant memory.

HTTP and the Rise of Forms

10

Although Berners-Lee’s WorldwideWeb browser and httpd web server were designed to comprise a
full-featured hypertext editing system, allowing users to read, create, change, and remove network-
hosted HTML documents, NCSA Mosaic and other third-party web browsers supported only viewing
HTML documents. With only the ability to view web pages, these web browsers did not have much use
for the poST, PUT, and DELETE commands as originally intended. The new FORM element created a new

Chapter 1: Emergence(y) of the New Web

mechanism through which the user could send data to the server, though. By transforming the answers
to a fill-out form into a series of key-value pairs, the browser could embed additional user-provided
information with the web request.

If the form method was GET, then form data would be encoded and appended directly to the end of the
URL in such a way that the server could easily separate the parameters from the document identifier, as
follows:

GET /search?g=rails&display=100 HTTP/1.0

If the form method was POST or PUT, then the encoded form data was sent in lieu of what once would
have been HTML content created by the web browser’s editor, as follows:

POST /search HTTP/1.0

g=rails&display=100

With the great array of possible uses of the FORM tag came a realignment of the possibilities of what

a web page could represent. Instead of serving merely as a way to publish and modify information, a set
of web pages now could together form a transactional interface to some server-side application’s capabil-
ity. This FORM-centric realignment morphed the way HTTP commands were used. Instead of using a full
set of resource-oriented operations such as PUT and DELETE, web developers embraced a two-operation
mindset: Users were either GETting data or POsTing a form. The four primary HTTP commands shifted in
meaning accordingly.

Q The DELETE command slowly disappeared from the vocabulary of web developers, a casualty
of atrophy.

Q The puT and POST commands ceased to be ways to create and edit web resources and became the
mechanisms through which form data was submitted to an application running on the server.
Their identical operation made them interchangeable, with POST arising as the dominant choice,

arguably because the official definition of the POST command better aligns with form-centric
development. Some HTTP servers to this day no longer support puT by default.

0 The GET command ascended to reign over all nonform requests. Whereas formerly the GET com-
mand was used only to retrieve a resource without making any changes to data on the server,
with the addition of URL-encoded form data, GET requests gained the ability to make changes,
too, although it was and is frowned upon to use GET for such operations.

Therefore, although deleting user number 3 should officially be accomplished with a DELETE command:

DELETE /users/3

today, nobody flinches at the notion of “posting a delete user””:

POST /deleteUser

or perhaps even getting one:

GET /deleteUser?id=3

11

Chapter 1: Emergence(y) of the New Web

The form model of programming remains the dominant way to write web applications today. Even the
most advanced JavaScript-based applications such as Google Docs are fundamentally organized like a
mail-order magazine. Users GET read-only pages from this magazine, fill out JavaScript-enhanced forms
on the pages, and then poST that data back to an application running at the magazine’s source. In return,
they receive another read-only page whose contents may have been affected by the previous PosT data.
So although web applications such as Wikipedia allow users to create, view, modify, and delete their
own interlinking documents in a similar fashion to the original web, they do so at a layer above HTTP
commands originally created for these purposes. Users don’t ever really edit a Wikipedia page; they edit
a form containing data about that page and submit it to a script that writes that new data to a database.

In Chapter 6, you will learn about REST-based development, a style of web application development
that unites form-based web development with much of the original intent of the HTTP commands. REST
represents a whole application architecture defined by web-hosted resources that can be operated upon
using HTTP.

Hello, Web Applications

12

The form-based web development model kicked off the explosion of CGI programs on the Web. Recall
that the HTTP GET command returns either a document or the results of an executable script at that
document’s location. With the addition of forms, these remote scripts were able to receive input from the
user, creating a whole new range of possibilities. This new architecture is shown in Figure 1-4.

http://host/cgi-bin/app?params
Request >

CGI Application

Response <

Figure 1-4

In the CGI-driven setup, HTML documents sent to the client represent an interface to a program that
resides on the server. These documents contain forms that post to one or more endpoints that the web
server knows represents that program rather than a particular file. The nature of the HTTP request is no
longer about retrieving a document on the server but instead about sending data to the hosted program
and seeing what it has to say in response. The program executed by the web server examines the param-
eters on the HTTP request, performs some server-side function, and then generates HTML as its output.
The following Perl script might be used to process some basic form input, and output a web document,
for instance:

#!/usr/bin/perl
use CGI gw/:standard :html3/;

my $first = param('first_name') || "unknown";
my $last = param('last_name') || "unknown";

Chapter 1: Emergence(y) of the New Web

print header,
start_html ('New User Signup'),
hl ('Thank you for Signing Up!'),
table ({-border=>"'"'},
caption(strong('Below is a summary of your information')),
tr ({-align=>CENTER, -valign=>TOP},
[
th(['Field', 'Value'l]),
td(['First Name', S$first]),
td(['Last Name',6 S$last])
]
)
)
end_html;

The output of the CGI script is then sent back to the user as the result of the request, usually as another
HTML page containing the last operation’s output as well as more forms.

And thus dynamic web sites were born. Built on top of the original HTTP+HTML architecture, a
form-based programming model that could provide an interface to server-side software was now pos-
sible. CGI scripts were usually written in Perl, but any language could do. The only requirement was
that they had to take all their input up front as an HTTP-encoded request and eventually produce their
output as HTML.

This is a book about web application design, so the exciting result of CGI is the coding styles that
developers used to develop for this new environment. Two styles of coding evolved to support CGI
programming and the form-enabled web model, one after the other, which I name here code-first develop-
ment and document-first development. Both styles attempted to fix the complications of writing applications
that use form-based web interfaces, and the two styles result in very different code.

Code-First Web Development

Code-first development is a programming style that places primary importance on the programming
language and secondary importance on the output it produces. The components of a code-first program
are filled with functions, classes, and the usual suspects. Any output of the program is assembled using
variables, string concatenations, and buffers within the code.

So a Perl program using the CGI.pm module (which is responsible for bringing us such pillars of the web
as Slashdot and Amazon. com) would render HTML code using helper functions for all of the tags,
such as:

hl ('Thank you for Signing Up!')

Or a Java program might use a StringBuffer:

sb.append ("<h2>Thank you for signing up!</h2>");
sb.append ("<p>You should be receiving your pickled herring shortly.</p>");

The key in both is that the HTML document served by the web request is treated as the output of some
program. The web developer doesn’t write this document — he writes a program to write it.

13

Chapter 1: Emergence(y) of the New Web

14

The early days of CGI heavily favored this approach because it was the most straightforward way to
integrate existing programming languages into the Web. Most programming environments (except for a
few, such as LaTeX) were, understandably, program centric rather than document centric. The code-first
development style allowed developers to write code in more or less the same way as what they were used
to, with the only difference being that the code’s output had to be assembled as HTML. These programs
would be placed on a filesystem available to the web server, and all that the web server needed to do was
execute these programs when a URL referenced them and then send the program’s output back to the
web user.

The code-first approach offers a number of advantages to the web developer, including;:

Q

Q

It is essentially the same as traditional forms of programming, making it easy to apply well-
understood design patterns and testing methodologies.

It provides complete freedom for the developer, separating the operation of the program com-
pletely from the fact that it is being operated in the context of some external service (the web
server).

Despite these advantages, its limitations are severe in the context of any nontrivial web application:

Q

The HTML produced by code-first programming is not easily maintained. Anyone who has
ever written a Java Servlet without using JSP knows this problem: Scores and scores of concate-
nated strings assembling fragments of HTML like a person rushing through a store filling his
arms with piles of goods. The following code contains a serious HTML error. Can you find it?

protected String buildThankYouResponse () {
StringBuffer sb = new StringBuffer();
sb.append (beginPage ()) ;
sb.append (title());
sb.append (beginSidebar ()) ;
sb.append (writeLinkMenu()) ;
sb.append (beginMainSection()) ;
sb.append ("<h2>Thank you for signing up!</h2>");
sb.append ("<p>You should be receiving your pickled herring shortly.</p>");
sb.append ("<p>Click back to return to the book.");
sb.append (endMainSection()) ;
sb.append (endPage ()) ;
return sb.toString();
}

The error is just one of many common ones in this type of code. The output of the begin
Sidebar () method is appended to the final response, but an endsidebar () method is never
called. The incremental, method-calling approach makes committing this kind of mistake easy,
potentially leading to nonsensical HTML. Equally as dangerous is the confusion that these
method calls add to the process in the first place: Perhaps the beginSidebar () function cleans up
after itself and does not need an endSidebar () counterpart, but without digging into the imple-
mentation of each, it is impossible to know.

HTML is a hierarchical, document-centric language, and it quickly stops making sense when
small fragments of it are taken out of their context. Scattered across many lines of code and sur-
rounded by quotes and function calls, it is hard to understand, and it isn’t any fun.

Chapter 1: Emergence(y) of the New Web

Q Code-first programming combines page design with control logic. When HTML pages are
assembled inside the loops and functions of a program, separating the design of the page from
the control structures that decide what a user should see becomes impossible. This means that
any visual changes to your web page require modifications deep within your application code.
Imagine if painting your car required rebuilding the engine. That is what to expect whenever
you run across a program that begins like this:

beginPage (sb) ;
if (user.isAdmin()) {
sb.append ("<hl>Administrative Interface</hl>");
for (Module adminModule : adminModules) {
adminModule. toHTML (sb) ;
}
}
else {
sb.append ("<hl>Welcome, Ordinary User Not Deserving of Cool Admin
Modules!</hl>");
}

For small applications, this limitation may not be a serious problem, but over time, and with
scale, it will inevitably become a big one. Page design shouldn’t be about programming, and pro-
gramming shouldn’t be about page design. They are separate concerns that are addressed using
separate languages, so making one depend on the other only hinders the ability to be effective in
either. Web designers with mastery of HTML and CSS but not programming find it difficult to
play an active role in web development and maintenance in this environment, for example. Each
change they make must be embedded into the flow of a program, so new designs and updates
might have to be applied to the site through a programming-minded intermediary. Ideally, web
designers could make visual updates to the site with minimal interaction with the program logic
that powers its behavior.

O Code-first programming leads to HTML duplication. Each code-first program stands on its
own, with its own entry point and output, so each is responsible for performing everything
required to produce a complete web page. It is possible to organize all these mini-programs so
that they share common routines and code, but, in practice, this does not usually happen as well
as it could.

So, seven different CGI scripts all might have a routine that checks to see whether a user is
logged in. Or the ubiquitous navigation strip at the top of the page might be duplicated for each
page with different styling to signal which page the user is currently on. This type of copy-and-
paste programming can be more convenient during development in a code-first approach, but it
ultimately makes site maintenance difficult.

Document-First Web Development

Not long after CGI programming swept the Web, a new web development model began to emerge that

emphasized the HTML output over the control logic governing it. Document-first programming is a style
of programming that places primary focus on the formatted output of the program and secondary focus
on the control structures that affect it. Document-first code consists of documents in their output format
with embedded code that must be processed before the output is considered complete. Figure 1-5 shows
the document-first, or active-document, model graphically.

15

Chapter 1: Emergence(y) of the New Web

(_
AN - Active
Documents

http://host/function?params
Request >

Response <

Interpreter
Figure 1-5

For the quintessential example of document-first programming on the Web, look no further than PHP. In
1995, Rasmus Lerdorf wrote a Perl program to help him track accesses to his online résumé. That script

turned out to be a bit of overkill, and after two years and a rewrite in C, it became PHP, one of the most
successful web scripting languages of all time.

PHP, and the document-first style, presents the programmer with a different environment from the one
the first CGI authors were used to. It is an inversion in the primary language used to describe the web
application. Instead of writing code that outputs HTML, the programmer writes HTML that contains
embedded code. Embedded code is contained within special tags, usually <% %> or <? ?>.

These documents are stored in a filesystem like any other document that a web user might request, but
the server is configured to handle them with special instructions based on their file extensions. Before
these documents are returned to the remote user, the web server runs them through a “hypertext prepro-
cessor” that processes the document linearly and executes any of the bits of code within it.

So the following fragment might be used to conditionally display an administrative link section to a page
based on whether a variable has been set:

<? 1f (user_is_admin) { ?>

<ul class="link_section">

Add User</1li>

Reset Password</1li>

<? } 2>
Or a list of comments for a blog entry might be shown as follows:

<? foreach ($Scomments as S$comment) { 2>
<div class="comment">

<hl><?= $comment->title ?></hl>
<p><?= $comment->contents ?></p>

</div>

<p) 7=
Using the document-first style, web developers can work in their native environment of HTML while

still writing the code needed to control decision-making and load data. It preserves the document feeling
while still allowing dynamic behavior. The document is its own output — nowhere, as the developer, do

16

Chapter 1: Emergence(y) of the New Web

you need to state that a particular portion of text is headed to the remote user. As long as the control code
embedded within the document does not prevent a particular region of HTML from being parsed over,
it will be appended to the output.

This style of coding is also more web-designer friendly than the code-first style. Despite the presence
of embedded code, HTML is the dominant structure, so web designers can work around the control
statements and make edits to regions of HTML without having to change any code. Document-first files
can be referenced for inclusion to other files, so the heavy bits of programming can be roped off into
library files and simply included near the beginning of a page. File-inclusion also allows web designers
to avoid repetition, breaking often-used idioms into their own file for reuse across the site. Although the
document-first approach presents a much easier way to dynamically build HTML documents, it is not
without its own problems from a web application perspective:

0 Every file is parsed as potential output. Document-first programming presents a developer-
friendly way to craft HTML output but does so at the cost of providing a straightforward way to
write the portions of your application that are pure code. Model objects that encapsulate data in
the database and libraries with helper functions must be written inside files that are included at
run-time during the preprocessing step, which means that they are parsed as potential contrib-
utors to the application’s output. You therefore must be on guard against accidentally including
any strings in those files that will be appended to the output because such strings might prema-
turely begin the server’s response to the client (before cookies are sent or before a redirect deci-
sion is made, for example).

0 Managing the decomposition of documents can be arduous. There is no centralized entry point
in document-first applications; each document that can be addressed via a URL serves as its
own entry point. This means that developers must include all dependencies at the top of every
web-accessible file. In practice, many of these initializations can be abstracted into a single file
that may be included with one line on top of each file. But this still doesn’t quite solve the prob-
lem, because developers are still left to create their own ““pipeline” of operations that help fulfill
the web request. It would be much nicer if the framework did not require every page to start
from scratch and instead provided a single entry point that could handle details such as database
connections for you.

The decomposition problem is made more difficult by the fact that a single document type is
used to store every possible construct within the project. Whether you are defining a class, writ-
ing a set of functions, performing a login operation, or outputting HTML, the setup of the file
looks identical. Where should cookie and session-keeping operations go? What about database
management code? Should SQL queries be allowed to occur in the middle of a page definition?
How should errors be handled at various stages of the page’s parsing? These types of ques-
tions are all made difficult to answer because all documents in a document-first system such
as PHP are treated the same: They all are potential entry points into the application containing
embedded code. Without strong guidelines from the framework about proper decomposition
strategies, developers are left to find a solution on their own, and the solution will vary from
developer to developer.

0O Document-first programming can result in just as much code juxtaposition as code-first
programming. Data operations such as performing a search, loading a user object, or saving
a new object must occur inside code blocks embedded in HTML. Although this requirement
doesn’t present any technical problems for the developer, it is just as poor of a juxtaposition of
concerns as concatenating HTML strings inside control flow. There is no reason that developers
should have to cope with an SQL statement embedded in a PHP function embedded in an HTML
file. Scale this scenario over hundreds of files, and you have a maintenance nightmare.

17

Chapter 1: Emergence(y) of the New Web

The document-first approach of hypertext preprocessing has many advantages over the code-first style
for web application programming, but it still leaves developers with much to be desired. As long as
the code embedded in document-first files directly pertains to the display of information within the
document, it seems an efficient and easy-to-maintain solution. But as soon as control logic, database
operations, and other such tasks are thrown into the mix, document-first files can become just as difficult
to maintain as code-first files.

Emergency Room

The Web has come a long way. It started as a distributed document repository and quickly became the
launching board for a new type of application. Propped on top of the original HTML-+HTTP architecture,
this new application platform shifted the way the architecture was used so that commands and function-
ality were embedded in the form data of web requests rather than in the HTTP command conveying the
request. This approach enabled web requests to convey any type of data, not just document operations,
but it also sent the whole industry of applications programming crashing into a medium whose semantics
and programming styles were in a state of flux.

So here we are today, with web application development simultaneously revolutionizing our economy
and experiencing an emergency. The revolution is occurring because the web provides such a powerful
and democratizing platform on which to create applications. The emergency is occurring because web
development methods are still in the process of evolving toward the structure and stability required to
take on this enormous new role.

If you peered behind the curtains of many web companies during the early 2000s, I suspect you would
see waters churning as a result of these two opposing forces. I worked briefly for a major online com-
merece site at which you’ve no doubt shopped, and the tension between these two forces could be seen
clearly there. The web application that comprised its entire business appeared flawless to the outside
web user, but inside it was chaotic. The web application code had grown organically until it reached
gigabytes in size, and it contained so many memory leaks that each production server had to be rebooted
at semi-random intervals. The company wanted to patch up this software, but it was too large, too inter-
twined, and too confusing for anyone to attempt such a feat. The result was a multiyear effort to rewrite
the entire codebase from scratch. This web application is part of the revolution taking place, both in the
Web’s importance and in the need for better web development practices.

As the needs of developers change, certain themes that arise more frequently than others become embed-
ded into new environments as built-in idioms to support those needs. Until recently, web application
programming has largely been done with a set of keywords and metaphors developed long before the
web became a popular place to program. APIs have cropped up to support web-specific features, but
they are no replacement for fundamental changes in the programming environment itself. The growth
of web applications requires a new type of programming designed specifically for the needs of the Web.
Luckily for you, such environments are now beginning to flourish.

Emergence of the New Web

A new breed of development frameworks has appeared that reflects a true maturation of web develop-
ment as a discipline all its own. With the charge being led by Ruby on Rails, these frameworks represent
the idea that web applications are neither code-first nor document-first, but rather a combination of the
two. The code-first approach best addresses entry points, control logic, and data operations, whereas
the document-first approach best handles the creation of output to be sent to the web client. These new

18

Chapter 1: Emergence(y) of the New Web

frameworks reflect a belief that web programming is heterogeneous in language while homogeneous
in process, that a successful web framework should not be general-purpose language with a few helper
libraries attached but rather a complete environment whose every design feature assumes operation over
the Web. As a result, the Web is built into everything from the directory structure of a project to the tasks
that no longer have to be performed by the developer.

Ruby on Rails is on the leading edge of web development techniques, both because of its own originality
as a framework and its adoption of the latest technologies and ideas from the web development commu-
nity. This book focuses on both. Some of the chapters cover features or innovations specific to Ruby and
the Ruby on Rails framework, but some cover topics in modern web application development embraced
by Rails but not monopolized by it.

This chapter outlined the history of web development to highlight not only how much it has changed
over the years but also how many of the ground assumptions of the Web have stayed the same. Under-
standing the assumptions that created your chosen development environment will help you design web
applications that integrate into the web more smoothly. And in later chapters, such as Chapter 6, you will
see that in many ways, the very latest in web design is a return to the original semantics of HTTP.

There has never been a more exciting time to be a web developer. The web has broken through its ado-
lescent years as a new medium and is now accepted from the living room to Wall Street. As the Ruby on
Rails framework demonstrates, the web is no longer just an output file format but a full application devel-
opment medium of its own, with its own patterns, abstractions, and vocabulary. The remainder of this
book shows you how to take hold of this new application medium and use the latest design abstractions
and techniques to bring your web development to the next level.

19

|

The Rails Concept

W. Web approached the picnic tables set up for breakfast cautiously, clutching the orientation binder
in his hands. He waved as he saw Vik, the man he had met preaching on the street outside the hospital
after being discharged. Here in the camp outside the city, all the cult members he remembered from
the recruiting sessions were much more relaxed, their nervous edge gone.

Web grabbed a paper plate from the serving line and began perusing the platters, deciding what
to eat.

""Excuse me; I'm new here. Do you know if there is a serving spoon for the eggs?”” he asked the woman
in front of him.

She turned, amused, and smiled with a quizzical brow, "’Serving spoon? No, just imply to the platter
that you’d like some.”

"Imply to the . . I'm sorry, what?”’

The woman held her empty plate out to the platter and looked expectantly at it. W. Web couldn’t tell
whether he had blinked while she pulled a fast one or he just hadn’t noticed the eggs on her plate all
along, but when she pulled the plate back, it was full.

""We always felt serving spoons were redundant, anyway,” she said with a smile. "’ After all, what else
were you going to do with them?”’

Web inched his plate toward the inanimate platter, looking a bit confused. He jerked his hands back
as an omelet suddenly weighed down the plate.

"There you go! A natural. If you want scrambled, try not to look so confused. And smile for sunny
side up.”

Web offered a timid smile back and muttered his thanks, shuffling away to clear his head. He slid past
the filling picnic tables and back up the hill toward his cabin, the woman’s voice wafting behind him.

"If you're headed back to your bunk, make sure you touch the door with your left hand first, otherwise
the door won’t unlock!”” and then after a pause, "’"Don’t worry! It will all start making sense!”’

Chapter 2: The Rails Concept

If Rails were a mixed drink, the recipe for it might read, /1 part framework, 1 part language, 2 parts
mindset.” Rails is as much a set of guidelines for thinking about web development as it is a framework
for using web development. The two can’t really be separated. Everything from the Rails project structure
to the layout of your HTML files is affected by the Rails mindset, driven by one opinion of how web
development should work — and understanding that design philosophy can be as important as the
mechanical task of writing Ruby and HTML code.

This chapter is a concise review of these components to Rails: the framework, the language, and the
mindset. Rails code looks and feels different from non-Rails code, but when you become used to its look,
the code you write will be far more productive. This chapter briefly covers these aspects of Rails to review
topics such as project structure and how the Rails pipeline operates. Later in the book, you will learn
how to extend this architecture with plug-ins and new language-like features. After discussing Rails as a
framework and a language, this chapter delves into several vignettes that describe Rails as a state of mind,
a style of programming driven by beliefs about how effective and enjoyable programming should work.
All these ideas affect the way in which the Rails framework operates and should motivate the design
choices you make in your own code. Many of them are also the topics of later chapters in this book.

In many of the areas discussed below, the Rails concept extends past Ruby on Rails itself and to many
of the other Rails-like frameworks available. Today, Rails developers can choose from a number of rein-
terpretations of the basic Rails idea, or they can start from scratch and pick and choose the ideas in Rails
that make sense for their own application:

QO Merb for Ruby (www.merbivore.com)

Q TurboGears for Python (www. turbogears. org)
a Django for Python (www.djangoproject.com)
QO Codelgniter for PHP (www.codeigniter.com)
a CakePHP for PHP (www . cakephp. org)

Each of these frameworks looks and feels different to the programmer, but are all striving toward a set
of similar goals. These shared beliefs and goals are important because they represent a new branch of
thought about web development. Few of the ideas in the Rails mindset are inventions of Rails. Many are
broader movements in the web community or traditional programming ideas reinterpreted in the context
of the Web — things such as test-driven development, REST-based design, and MVC. But Rails is unique
in collecting all these ideas into a unified framework and so thoroughly and seamlessly integrating them
into the brick and mortar of web development.

This chapter does not go into deep detail of how to set up a Rails application or how to use the many fea-
tures the Rails libraries offer you. Several books address these concerns already, among which two of the
best are Agile Web Development with Rails, by Dave Thomas and David Heinemeier Hansson, and The Rails
Way, by Obie Fernandez. These books are a definite must for the bookshelf of any Rails developer and are
valuable references regardless of your skill level. Coupled with one of those or a similar book, this chapter
will provide you with a better understanding of the design choices that accompany the Rails framework.

One Part Framework

Rails is referred to as a “full stack’ framework because it handles everything from web serving to
database management right down to HTML generation. As with the JSP and ASP-style environments,
the idea is that a vertically integrated web development environment can provide a better experience for

22

Chapter 2: The Rails Concept

the developer; the components can be more tightly coupled and the default configuration more optimized
out of the box.

In such a tightly integrated environment, the developer interacts with Ruby on Rails through a series
of shell scripts that generate and manage the Rails project environment. The script/ folder in the Rails
project directory contains a generator to create code and database schema stubs, a Ruby-based web
server so that you can test while you code, and a console for experimenting and debugging. Other tasks
are handled through Rake, Ruby’s equivalent of Ant. Rake handles everything from database schema
migration to automated testing and code deployment.

Because the breadth of Ruby on Rails” functionality spans so much ground, it makes sense to look at the
framework from a few different angles. What follows is a high-level rundown of Rails from a configura-
tion perspective, a coding perspective, and a process perspective.

The Configuration View

Rails differs from other vertically integrated environments in its strong preference for convention over
configuration. So where Tomcat and Jetty often require pages of XML configuration, Rails requires none,
or perhaps only a few lines of YAML (the Ruby-preferred markup language). This extreme aversion to
configuration files (or XML sit-ups, in Rails-speak) makes for a very distinctive and recognizable code
structure that is the same across all Rails apps. This may annoy control freaks to no end, but it comes as
a welcome relief to developers who are interested in spending time on their web application rather than
their server configuration.

It comes as no surprise, then, that all Rails projects have exactly the same directory structure. The first
command every Rails developer types to begin a Rails application, rails appname, creates a new direc-
tory and prepopulates it with the folders and files that comprise an empty and waiting Rails application.
This directory structure is a useful template for web development projects, so if you've decided to go with
another language, still consider giving it a try. Many of the Rails-style frameworks already follow this
general project structure, each with its own custom variations, thereby making it an informal standard
among MVC web frameworks. Here is what you get:

Q app: The dynamic portion of your web application
controllers: The interface and business logic
helpers: Supporting code for your views

models: The model objects persisted to your DB and used in your application

views: Templates for the responses sent back to remote users

I Ny I I

layouts: Page layout files
Q config: Environment, database, and application configuration
Q environments: Environment-specific configuration
Q initializers: Configuring files to be parsed at server startup

Q db: Your database schema as a set of ActiveRecord migrations

(]

*doc: Documentation for your web application
Q *lib: Any Ruby libraries specific to your web application

Q tasks: Project-specific rake tasks

23

Chapter 2: The Rails Concept

24

log: Logging output

public: The static portion of your web application

.|
a
]

stylesheets:: Your CSS files
javascripts: Your JavaScript files

images: Your image files

*script: Shell scripts to manage your Rails project

*test: All the testing code and data for your application

U0 U0 o

fixtures: Database data to be preloaded during testing

functional: Functional tests to verify correctness of your controllers
integration: Integration tests

mocks: Mock objects for testing use

unit: Unit tests to verify correctness of your models

tmp: A place for Rails to store its temporary data

vendor: External libraries used by your application

Q

plugins: Rails plug-ins

This directory structure standardizes the way in which Rails applications are designed and allows Ruby’s
shell scripts and automated features to function correctly. In addition to the regular directory structure,
file and class names are strictly regulated, which is one of the reasons that nearly every new object you
create outside of the 1ib/ directory is created via the script/generate utility.

Such a standardized environment doesn’t leave much to be configured, which is the point. Preparing a
web application for deployment is the exception, and no matter what your framework, deployment will
likely require extensive environmental tweaking. But for development purposes, the configuration of a
Rails project generally consists of three steps:

1.

The database: Rails assumes that every web application must have a database and pre-
populates the file config/database.yml to store its connection information. This YML-
encoded file defaults to three separate database definitions: one for development, one for
testing, and one for production. These definitions are preconfigured to use SQLite, a light-
weight database that stores its files locally to your project directory and does not require
any special configuration. The connection is global to your web application — no special ini-
tialization or connect code is needed on your part. More advanced database configurations
are possible — for example, splitting data over multiple databases or replicating data.

Routes: As Chapter 4 illustrates, Ruby on Rails takes URL design seriously. Routes are tem-
plated rules that take an incoming web request and route that request to a controller and
action. The driving philosophy is that the URL, not request parameters, should specify the
nature of the web request, and routes are a way to accomplish this. Most other frameworks
have the concept of routes (for example, in Tomcat, they are defined in web.xml1), but Ruby
on Rails provides a set of Ruby routines that make route definition simple and concise.
The default routes automatically generated for all Rails applications is the following:

map.connect ':controller/:action/:id'
map.connect ':controller/:action/:id.:format'

Chapter 2: The Rails Concept

These routes map any URL in the form http://domainname.tld/a/b/c into three sepa-
rate variables: controller, action, and id. The controller and action variables get special
treatment. They determine what code executes to form a response for that URL. All other
variables (including id) are passed along to this executing code in a hash table called params.

The environment: The file config/ directory contains several files that give the developer a
chance to insert Ruby code that is executed when the Rails server starts up. It is the one-stop
location to perform project-wide operations, such as including external libraries, setting log-
ging levels, or overriding the default behavior of Rails components. Later in this book, you
will see how to place code here that overrides and extends the Rails framework with custom
code.

The Code View

The Rails architecture, as the developer interacts with it, is divided into three separate subsystems:
ActionPack, ActiveRecord, and ActiveResource. These three are accompanied by a number of supporting
libraries. ActiveResource is the newest addition to the bunch and provides support for models that wrap
around remote, RESTful resources. ActionPack and ActiveRecord are the traditional Rails libraries and
govern the three main components of a Rails project: the model, the view, and the controller. ActionPack
handles the controller and view, and ActiveRecord handles the model. Chapter 3 is devoted entirely to
the proper breakdown of these components, but for now, I'll just stick to the high-level structure, shown
in Figure 2-1.

| Model Classes | | Layouts | | Controller Classes |

| Associations | | Templates + Partials | | Filters |

| Validations | | Helpers | | Actions |

| Migrations | | Static Content |
N\ AN 2N J

Supporting Library Supporting Library Supporting Library
ActiveRecord ActionPack ActionPack

Figure 2-1

ActiveRecord supports all the various components that comprise code supporting the web application’s
model. The base class ActiveRecord: :Base, from which all model classes derive, contains the func-
tionality that handles the automatic mapping and persistence from model object to database table. It
also contains a number of helper methods that manage relationships between model objects (such as
belongs_to and has_many) and a subframework called migrations that provides versioned database
schema management. (Migration-based development is covered in depth in Chapter 11.)

ActionView is a library within ActionPack that provides the basis for the view portion of a Rails site and
handles the parsing of template files with embedded Ruby (the variables are initialized from within the
controller). It includes its own pseudo-language, R]S, that allows Ruby developers to write Ruby that
compiles into JavaScript. It also comes with numerous helper functions to manage everything from text
manipulation to form generation.

25

Chapter 2: The Rails Concept

Finally, ActionController is a class within ActionPack that provides the basis for Rails controllers.

By subclassing ActionController: :Base, developers can define the basic actions available to remote
users by declaring and implementing public methods. The details of HTTP, such as request-types,
response-types, and parameters, are abstracted away into a set of class-accessible variables and helper
functions. ActionPack also provides a feature called filtering, which creates a set of aspect-oriented
programming-style cut points into which developers may inject code that modifies the nature of the
web request fulfillment. Filters allow cross-cutting concerns, such as authentication or character set spec-
ification, to be handled from centralized routines and then applied to a number of possible actions within
the site.

The Process View

26

Rails provides a fixed pipeline through which incoming HTTP requests are served. Figure 2-2 depicts this
process. First, an HTTP request arrives at the server and is checked for a match against static resources
in the public/ directory. If a match is found, then that file is immediately returned, just as with a regular
web server; otherwise, the URL is passed to the router.

Router Controller

Controller Action
HTTP : :
Request { Action Ac.tlon
Parameters Action
<h2>Here are your
And off to the user! <% @items.each {
|item| -%>
Ttem <%= item.
<% } %>
Figure 2-2

After the request hits the router, the following series of steps take place:

1. Routing: The router matches the HTTP request against its known routes, using the first
match it finds. It uses the route definition to interpret the URL as a call into your Rails appli-
cation, defined by the notional tuple {Controller, Action, Parameters}, where
Parameters is a hash table.

2. Controller instantiation: Based on the results of the Routing step, a controller instance is
instantiated. This controller derives from the base class ApplicationController, which
is also a part of your Rails project and usually contains methods that handle session and
authentication functionality.

3. Action invocation: Based on the routing results, an action on the instantiated controller is
called. The term ““action” is just Rails-speak for a public method on your controller. The
action

0 Uses the model classes to perform any necessary modifications in the databases

0 Uses the model classes to load any database data necessary for constructing the view

Chapter 2: The Rails Concept

Q Specifies a view to render as a result to the user

4. View rendering: The view specified by the controller action is processed as an ERB docu-
ment (a document-first programming-style file containing embedded Ruby). This view may
use any variables set up by the controller, may render other partial views as components,
and may be rendered within the context of a layout.

5. Response: The results of the view rendering are sent to the remote user.

This process represents one round-trip through a Rails-hosted application. Besides being straightforward
to understand, this process conforms well to the MVC design pattern (discussed in Chapter 3) and works
well regardless of response type. So whether you are rendering HTML pages, PDF documents, or XML,
the same application flow can be used and certain elements of it even reused (discussed in Chapter 5).

One Part Language

In addition to being a framework, Ruby on Rails dons the guise of a domain-specific language (DSL).
It takes advantage of Ruby’s malleability as a programming language to appear as one of its own, a
superset of Ruby made just for the web. Although technically this ““language” is really just method
calls into a cleverly designed set of base classes and mix-ins, it certainly doesn’t feel that way to the
programmer. So let’s afford it that status, because it is far more useful to do so than to limit ourselves
with the technicalities of what it means to be a programming language.

Key to the idea of Rails as a language is the importance of new abstractions in the evolution of pro-
gramming. An analogy might be drawn to C. As the last mainstream language in which programmers
really program a machine rather than a set of abstractions, C is very powerful when it comes to low-level
tasks. But application programming has moved past the days of allocating memory and manipulating
null-terminated character arrays and onto higher-level abstractions that allow us to express more com-
plicated thoughts with greater ease. The evolution of programming languages is, in many ways, the
continual layering of new abstractions upon existing ones.

New abstractions on a language usually first appear as third-party libraries. Examples are the strings and
collections provided by the STL for C++, abstractions such as servlets in Java, and, to a certain extent,
how Rails attaches itself onto Ruby. But the Ruby language is among a small group of peers in its great
flexibility. Optional parentheses allow method calls to appear as keywords. Symbols (the colon-prefixed
strings used all over Rails) provide a clean way to humanize hash keys and object names, and Ruby’s
extensive support for features such as closures, late binding, and self-modifying code allow a level of
linguistic trickery that is a great strength in the eyes of framework developers.

The result of all this is a framework that recognizes the important role abstractions play in advancing
technology and that melds these abstractions into part of a larger language. Rails makes Ruby behave as
if it were a language created just for the Web. Sure, you can fetch a user’s address from a database by
issuing a SQL query and parsing the results, such as the following code in PHP:

$sgl = "SELECT * FROM addresses WHERE users.id = 34 AND users.address_id =
addresses.id;"
Sresult = mysqgl_query($db, $sgl) or die ("Failed query of " . Squery);

Srow = mysqgl_fetch_array(Sresult, MYSQL_ASSOC) ;
if (Srow) {
$zip_code = Srow["zip"];

}
27

Chapter 2: The Rails Concept

else {
// Uh oh!
}

but this is a task that web developers do all the time. Isn’t it a lot easier to abstract it away so that we can
simply state the following?

user = User.find(34)
zip_code = user.address.zip_code

In Chapter 10, you will learn how Ruby on Rails pulls off these tricks and how you can, too. For now, I'll
just focus on what it does and why this is useful to developers.

This new pseudo-language is useful because it abstracts away common web development tasks that
normally require low-level attention from the developer. Some of the features of this language replace
concepts that would otherwise have had to be developed in Ruby, such as data validation and layout
decisions. Other features abstract away the complications of other languages, such as SQL and JavaScript.
These features occur throughout the Rails framework, but the three main areas that affect you, the devel-
oper, are in your model, your HTML templates, and in your options for writing JavaScript.

Models on Rails

28

The most unique and immediately apparent element of ““Rails as a language” comes from ActiveRecord.
Right from the start, ActiveRecord acts as though it knows you. It infers database table names based on
the names of your model classes (don’t worry, this can be overridden) and automatically generates getters
and setters based on the schema that you've defined. It also provides a set of base methods that can be
used in the body of the model definition to create associations with other objects and set up validations
for instance data.

Altogether, these features may result in little else for you to do in terms of model writing, depending on
your application. In fact, that is exactly the point — it removes the yak shaving from the model, leaving
you to focus on other things, such as good model design and application-specific algorithms. Automation
is half of the way Rails does this for you; the model-specific language Rails creates for you is the

other half.

Yak Shaving

Yak shaving is defined on Wiktionary as ““any seemingly pointless activity which is
actually necessary to solve a problem which solves a problem which, several levels of
recursion later, solves the real problem you're working on.”” Seth Godin illustrates the
concept with a story actually involving a yak in a March, 2005, blog post:

Yak Shaving is the last step of a series of steps that occurs when you find something
you need to do.

I want to wax the car today.”

”’Oops, the hose is still broken from the winter. I'll need to buy a new one at Home
Depot.”

Chapter 2: The Rails Concept

”But Home Depot is on the other side of the Tappan Zee Bridge and getting there
without my EZPass is miserable because of the tolls.”

’But, wait! I could borrow my neighbor’s EZPass. . .”

""Bob won't lend me his EZPass until I return the mooshi pillow my son borrowed,
though.”

””And we haven’t returned it because some of the stuffing fell out and we need to get
some yak hair to restuff it.”

And the next thing you know, you're at the zoo, shaving a yak, all so you can wax your
car.

Rails uses associations to state how model classes are related to other model classes. Associations sit
inside the class definition, usually right near the top, and hide away the details of foreign-key relation-
ships in the database schema. Using associations, ActiveRecord is able to perform many join, ordering,
and filtering operations for you automatically, allowing you to treat data in the database as though it has
never been anything other than a regular collection of Ruby objects.

As an example, the following code shows how you might join the Photo model to the User model. This
book does not include a reference to associations API, so if you are unfamiliar with it, take a peek in
one of the books mentioned earlier or check online at www.rubyonrails.org. What is important here is
not the mechanics of the association, though, but rather the way Rails allows you do it a manner that
simulates natural language.

def User < ActiveRecord::Base
has_many :photos
end

A “User has_many :photos.” From this statement, Rails makes several assumptions, all of which can
be overridden with extra arguments if needed. By default, this bare-bones statement modifies the user
object so that it expects a foreign key association on the field user_id of a table named Photos. The
developer is then able to access a user’s photos as if they were a regular collection on the User object.

ActiveRecord associations can get a lot more complex, including many-to-many relationships, join tables,
conditional joins, and polymorphic associations. All these are handled in a similar fashion, starting with a
simple assertion in the model definition and possibly expanded with refinements to the default assump-
tions that come packaged with that feature.

Validations on data are performed in a similarly language-native way. As are associations, they are
inserted into the body of a model class definition; they then expand themselves behind the scenes into
code that monitors your instance data as you load and save it. Again, read the following code with an
eye for how the Rails framework attempts to enable code that reads like a sentence:

def User < ActiveRecord: :Base
validates_presence_of :user_name, :password
validates_confirmation_of :password
validates_uniqueness_of :user_name, :on => :create
end

29

Chapter 2: The Rails Concept

The unique innovation in each of these scenarios is the manner in which the Rails framework presents this
functionality to the user. Rails does not use configuration files stored elsewhere, or require users to create
their own object-to-database mappings; instead, the Rails framework provides a mixture of automation
and helper functions that appear to create a model-specific language built on top of Ruby. The end result
is a programming language that understands the high-level concepts important to database work as
well as it understands simple data types such as integers and strings, making you more productive as a
developer and making your application more understandable as a code artifact.

Web-Specific Tasks

30

The Rails language extends to the view portion of your site, where Rails provides several libraries called
“helpers” that semi-automate common tasks in HTML development. These functions do more than just
replace HTML; they provide a buffer layer between implementation decisions on the server side and
design choices on the client side. They also blur the existence of multiple languages working together: A
single call to a Rails helper might result in HTML, JavaScript, and Ruby code being generated behind
the scenes.

The routes.rb file, for instance, does more than just set up routes to match incoming requests to con-
trollers and actions. It also sets up methods that return URLs referencing your resources and named
routes. These methods can be used throughout the web application in place of hard-coded URLs to
guard you against changes that may occur in these URLs. The following route definition, for example,
sets up both a series of URL paths for account objects and also creates helper methods that generate URLs
conforming to those paths.

map.resources :accounts

In addition to establishing several REST-based routes, this command creates methods such as
accounts_url, accounts_path, new_account_url, and edit_account_url that can be used throughout
the application to encode links to various account features without your ever having to worry if the
physical location that idea resides at changes. (You'll learn all about REST, resources, and map . resources
in Chapter 6.)

link_to 'New Account', new_account_url

Within the RHTML template of a particular page, helpers such as 1ink_to and form_for provide a
standard method of creating HTML structures throughout the site. The components that make a web
page are often very modularized, even if we tend to think of them as long, continuous HTML documents.
These helper methods hide the complexity of the HTML beneath, instead replacing it with a Ruby-based
pseudo language for describing page elements.

Despite the extra processing cost (helper methods are some of the first to go when optimizing a high-
traffic Rails site), using the HTML surrogate Rails provides can be a very clean way to construct your
pages. The reason is that web sites are really composed of concepts, not HTML. Objects such as search
results, navigation links, articles, forms, and even links, are the concept-level abstractions that our minds
prefer to design with, rather than tags and attributes. The true value of these abstractions is the idea they
represent rather than the HTML structure that makes the idea appear in the browser. Abstracting the
HTML into a series of helpers is a way to move past the HTML and begin describing your site in terms
of these concepts instead of just writing HTML. Then, when the implementation for a particular concept
changes, you don’t have much work to do.

Chapter 2: The Rails Concept

The 1ink_to method, for example, results in a normal link by default, but what

if you needed to change the implementation beneath the concept of a link? Perhaps you are imple-
menting an advertising system for your blog. It is essential to record which ads users click on so that
you know how to bill your advertisers. In this case, the 1ink_to function could be overridden so that
it detects off-site URLs and links instead to a local redirector for statistic-keeping purposes, such as
/ad_redirect?adurl=urlhere. If you used the 1ink_to helper throughout your site, implementing this
change is a snap and can be done without changing any of the actual links as you originally wrote them.

Other helper abstractions standardize interaction patterns between client and server. In a framework that
stresses convention over configuration, such consistency is necessary to receive many of the automation
benefits. The form_for helper is a good example. Web developers know the monotony of implementing
forms; that’s why so many form generators utilities are available on the web. We need to manage field
labels and IDs, handle the server-side ID-to-variable mapping, prefill the form in the event of error, and
highlight erroneous fields where errors occurred. Except for visual styling, all these tasks are yak shaving;:
auxiliary work that needs to be done to meet our real goal of acquiring some piece of data. The form_for
helper automates much of this work:

<% form_for @user do |form| %>
First name: <%= form.text_field :first_name %>
Last name: <%= form.text_field :last_name %>
Email: <%= form.text_field :email %>
<%= submit_tag 'Submit' %>

<% end %>

This block of code results in the type of HTML code most of us would write anyway, but it automates
much of the mundane tasks that we would otherwise need to implement, such as prepopulating fields
with any data belonging to the @user object.

JavaScript

Advanced developers are unlikely to want to abstract away JavaScript entirely, but for quick and simple
JavaScript tasks, Rails provides a meta-programming language called RJS that allows developers to code
in Ruby and have that code translated at run-time into JavaScript. RJS lets developers treat the remote
web page and its elements as if they were regular Ruby objects and provides access to any of the variables
and helpers that a regular RHTML view gets.

By default, RJS hooks into the Prototype and Script.aculo.us libraries bundled with the Rails framework,
but, in theory, it could be overridden to use any JavaScript framework. This shields the developer from
the particulars of the JavaScript framework being used and the browser interpreting it, providing a
unified, platform- and framework-agnostic JavaScript front.

Let’s say you are coding a shopping list application that allows users to store lists online so that they
can add to them whenever they remember a new item. The list might look something like this, with an
AJAX-based form beneath it to add new items:

<ul id="shopping_ list">
Tomatoes</1i>
Garlic</1li>
Mozzarella</1li>

31

Chapter 2: The Rails Concept

If you choose to implement the AJAX request for adding a new item with the Puppet Style pattern
(described in Chapter 7), the response will be a block of JavaScript for execution instead of an HTML
fragment. This is exactly the type of scenario in which RJS steps in to help. RJS “templates” are a spe-
cial kind of view that describes how an existing HTML document should change. For example, an RJS
template that instructs the existing view to add the new shopping item to the list would be as follows:

page.insert_html 'bottom', 'shopping list', content_tag('li', @new_item)

Say you also wanted to create a nice notification that said “Item Added” and to highlight all notifications
currently on the page:

page[:header] .insert_html :bottom, content_tag('div', "Item Added", :class =>
'notification')
page.insert_html ('bottom', 'header', content_tag('div', '<p>Item Added!</p>',
:class => 'notification'))
page.select(".notification").each do |note|

note.visual_effect :highlight
end

This example, along with the source code, is available from this book’s companion web site at
Www . Wrox.com Or from www.artofrails.com/chapters/2/shopping_list.

Plug-Ins

To top off the Ruby on Rails framework and language, Rails provides a plug-in architecture through

which to change and add to the language and framework. Rails plug-ins are different from extensions
to many other frameworks in that not only is extra functionality added but also existing functionality
of Rails can be completely overwritten. In Chapter 9, you will learn how to use this technique, called

“monkey patching,” for yourself.

Two Parts Mindset

To become a Rails developer is not just to write code that uses the Rails framework but also to enter a
community of common culture and practices about web development. Learning the ground assumptions
from which the technical choices by this community arise not only gives you better understanding of the
community’s existing code but also allows others to read and help with your code, should they need to.

In Japan, Ruby’s home country, the suffix ~ kata is used to mean ""the way of going about ~ .”” Learning
proper Rails-kata is important for two reasons: First, it will give you a better understanding of the Rails
framework from a conceptual standpoint and will help you understand why certain elements of Rails
have been designed as they are. Second, it will give you a set of guidelines to use when designing your
own applications and Rails extensions. These guidelines will ensure that your code plays along with the
Rails framework nicely, keeping the overall effort to design and code a web application to a minimum.

Web Sites Are MVC Applications

The most defining philosophical choice made in the Rails design is an abandonment of the document-
centric style of web development for a strictly Model-View-Controller-based paradigm. Under the Rails
view, web sites are full-blown applications, deserving of every traditional application development

32

Chapter 2: The Rails Concept

technique and pattern. (But as in the novel Animal Farm, some patterns are more equal than others, and
the MVC one isn’t a choice!)

The driving practice behind many (if not most) scripting language—based web applications before Rails
came along was that web sites should be developed from the file system’s point of view. URLSs cor-
responded to folders in the server’s file system, and the names at the end of the URLs corresponded to
scripts containing code that would create the page you wanted. Rails throws this assumption away under
the opinion that web sites should be developed from the developer’s point of view — with abstractions
and file organizations designed for the benefit of developers, not the web browser. It divorces the URL
from the filesystem, instead using it to address a virtual endpoint into the application as a whole. The
inner gears of the framework do the heavy lifting to ensure that the right files are still loaded at the
right times.

Developing web applications with the MVC pattern has rippling effects on the way you work. It pro-
vides well-understood guidelines for how to structure your code. It enforces a breakdown of code that
facilitates testing and reuse. Most of all, it brings the art of engineered design to what was once a largely
free-for-all environment. In Chapters 3 and 4, you will learn more about the MVC pattern on the web and
see how to design your applications around it.

Web Applications Are Ecosystems

Rails web sites are structured as ecosystems of concerns, just as operating systems are. When you dig
down into the details of an operating system, you find that it is impossible to separate the code compris-
ing the kernel from the environmental details it depends on — everything from process scheduling to
memory management to file and device interaction. It can’t exist on its own.

No family of operating systems demonstrates this more than the Unix lineage. The Unix family includes
a large collection of operating systems, all of which implement the POSIX standards and contain roughly
the same directory structure. Although these operating systems are diverse (Unix, Solaris, Linux, Mac
OS X, BSD), they all implement the same ecosystem on which applications can be built and experienced.
Ruby on Rails proposes such an ecosystem for web applications.

Before Rails, web application developers started from scratch with every project they built. A new PHP
or Tomcat-based project would begin with an empty folder, and only the developer’s ideas filled it. Many
web-based utilities and web-aware methods were included in these frameworks, of course, but they were
tools included by the developer in his or her file for reference. The web application was built on top of
these tools, beginning with a blank slate and growing from there.

Rails applications are not built on top of Ruby on Rails; they are built within it. Ruby on Rails is a
programming framework, but it is also a web-centric ecosystem for web applications. Ecosystems are
different from plain-old frameworks. They are multilingual and far from agnostic. They treat problems
as a heterogeneous basket of concerns ranging from functional to structural. And just as developing for
the *nix ecosystem requires conformance to a particular world view of device drivers and interaction
patterns, developing for the Rails ecosystem requires buying into the Rails view of development.

So a brand new and “empty’”’ Rails project already contains 37 directories and 48 files (as of Rails 2.0.2),

setting up the basic structure of the web development ecosystem and providing scripts and templates to
manage it. Paying a visit to each of these different directories, one finds different types of content. Some
are filled with Ruby code, some have CSS, some have schema migrations, and others have RHTML. Each

33

Chapter 2: The Rails Concept

cluster of tasks in the web application is implemented in the language best suited for it and kept together
with its peers.

Convention over Configuration

A

34

If you look at any introduction to Rails, two overarching philosophies are always referred to: The first is
MVC; the second is Convention over Configuration. One of the difficult tricks in software development,
and especially framework development, is finding that sweet spot between specificity and generality.
Make a framework too specific and it will never gain wide adoption, but make it too general and its users
will drown under the extra work required to implement their particular task.

Web development is already a very narrowly defined task, with certain predictable characteristics and
interaction patterns. Although there is some variation of the architecture from project to project (one
developer may prefer HTML interfaces while another may prefer to use Flash, for instance), most char-
acteristics of the web environment are fixed across all projects, such as:

QO The HTTP connection separating client and server
The use of a URL to reference resources within the web application
Databases as a persistence layer

The necessity of database schemas

The presence of both static and dynamic content

O 00 0o

The use of layouts and templates

The Ruby on Rails design expresses the opinion that good web development should take advantage of the
fact that the web is a predictable environment instead of erring on the side of generality. The framework
should natively understand and expect the environment so that the developer doesn’t need to jump
through hoops wiring all the different components together every time a new component is introduced.
So Ruby on Rails does not attempt to be general purpose and doesn’t try to provide developers with the
flexibility to create their own conventions. You must use its predefined patterns of doing things, but in
return, you get a framework that automates most of your tasks for you.

A convention-based framework comes with a cost, though — you didn’t design it. The use of tabs versus
spaces, curly braces verses do-end blocks, CamelCase versus underscore_separated, pluralized table
names and collections — means that some of the choices are bound to be outside your tastes. But a tool’s
primary purpose is to be useful, not pretty, and a tool well used becomes beautiful in the hands of the
craftsman no matter the paint job. By standardizing the way to organize and write code, the need for
custom infrastructure can be dramatically reduced, and that can be a beautiful thing. This is the gamble
of convention over configuration.

Little Assumption Goes a Long Way

A framework based on strong conventions can cut a lot of the fat out of your code, but it can go only so

far. At some point, decisions need to be application specific. So although a Rails convention might be that
all document templates must reside in the app/views directory, you still need to tell your app which of

those templates to load.

Chapter 2: The Rails Concept

That doesn’t mean that the framework can’t guess, though. It just won’t be right all the time. For situ-

ations when a guess has a reasonable chance at being right, it makes sense to build that guess into the

environment as an assumption. Without any explicit direction from the developer, the framework will

assume that its guess was right and follow this default case, but the developer always has the option to
override the base case with custom behavior. Call it a relaxed convention.

It turns out that our languages and frameworks have been assuming things about our intentions for a
long time:

0 White space is the default delimiter for many types of inputs.
0 Programs return an “everything OK” exit code unless otherwise instructed.

Q Graphical programs render their windows on the primary monitor by default in a multihead
display.

Q InJava, a class variable with no modifiers is assumed to be package private.

The list goes on and on. All these are reasonable assumptions made to reduce the amount of code devel-
opers must write, but each of them can be overridden when they don’t fit. Given the fact that the Web
is such a predictable place, there should be a rich new set of assumptions that can be made to speed
development and add a bit of default behavior as a starting board.

When new Rails users view the famous “’Creating a Weblog in 15 Minutes”” screencast, the initial reaction
of many is suspicion at the “magic’ taking place to allow the application to be constructed so quickly.
The suspicion only grows when features such as scaffolding are encountered. In reality, this magic is just
a base set of assumptions that the Rails framework will make in the absence of explicit direction. Because
the assumptions are correct most of the time, they can be left as implicit by the developer, but in most
real-life circumstances, a bit more coding will be needed.

Following are some of the assumptions Rails makes about web development and how these translate
into code:

0 A controller action should render a view of the same name. A web user’s request URL is trans-
lated into an action that gets called on one of your application’s controllers. Nearly all web
requests are met with a response, so it is assumed that the action will render the view located at
app/views/{controller}/{action}.rhtml if it exists. If that file does not exist, or if you want
the action to render some other file, you must manually call the render function from within
your action.

0 A controller renders views with a layout of the same name. When rendering a view, Rails looks
for the file app/views/layouts/{controller}.rhtml.If it finds it, then it applies that layout to
whatever RHTML template is being rendered unless it is explicitly told not to.

0 Database tables represent objects, and their fields represent object properties. Active-
Record assumes that database tables in a web application generally represent an object that
the program is interested in. Fields on this table (such as first_name and last_name for a table
about people) then represent the interesting things we might want to store about that object. As
a result, ActiveRecord automatically generates getters and setters for all fields on a table that is
associated with a model object in Rails. You can override these functions, of course, but they are
there for you automatically as a base condition.

35

Chapter 2: The Rails Concept

These are just three of the ways in which Rails assumes things to reduce the amount of code that needs
to be written. In many ways, it is the 80/20 approach to framework development: Satisfy the needs of
80 percent of the users while acknowledging that the other 20 percent may need to put in a bit of extra
work. But in this case, the extra work put in by that other 20 percent isn’t any more than they would have
had to do anyway with a generalized framework that assumes nothing about you.

Aesthetics Matter

A co-worker once told me that whenever he came into my office, I was always grimacing at the computer
screen. I replied that coding in Java made me feel like a participant in American Gladiator, always dodging
one surprise from the JRE after the next. But his comment got me thinking. We developers spend so
much of our day in front of computers — it can’t be good to always be frowning at them. So, strange
as it may sound, I resolved from that day on to smile at my computer whenever I remembered, and
especially when under attack from the JRE. But a programming language shouldn’t frustrate us in the
first place — instead, it should be a pleasure to use.

In an interview for Professional Rich Internet Applications: AJAX and Beyond (Wrox), David Heinemeier
Hansson describes Ruby as follows:

Ruby is a language for writing beautiful code. Beautiful code is code that
makes the developer happy, and when a developer is happy, they are more
productive. Ruby is unique in the way it lets you express something briefly,
succinctly, and beautifully.

Developers can quickly see that many of the design decisions in the Rails framework were made as much
for aesthetic reasons as for technical ones. This aesthetic is reflected throughout the Rails community,
which has drawn to it individuals across the Web who share a belief in its importance. As a result, the
Rails community is known for being particularly obsessive about issues that have nothing to do with the
run-time workings of an application but everything to do with the developer experience.

The debate over pluralization is one of the most well-known examples of such issues. From its start,
the Rails framework has included a pluralization engine so that its pseudo-language can enforce proper
pluralization of the English language. You might state that a User object has_one :address but that it
has_many :photos. The model name for a user in your application will probably be User, but Rails will
pluralize this and expect the database table to be named users. Heinemeier Hansson discusses the debate
in an interview with technologist Scott Hanselman:

We actually had a very interesting debate at one point on how to pluralize
“octopus.” We actually have that now — there is a special rule just for Octo-
pus and Octopi. [So if I have an octopus model] it will look for an Octopi
table.

People say, wouldn't it just be easier if you have “person” and “person?”’
There wouldn’t be any translation, there wouldn’t be this big scheme for
pluralization. . .but we made a point that we prefer those aesthetics. My
collections are plural, so my tables should be plural, too. So we went through
all this effort just to make the point that aesthetics matter.

Of course, aesthetics are subjective, and this is where critics of the Rails framework have the loudest
complaints. It might not be for you, but if it is, take time to understand the attention paid to developer
experience in the design of the Rails language and try to incorporate this into your code. Although your

36

Chapter 2: The Rails Concept

web site may ultimately end up functioning the same as it would have otherwise, your code-base will
have you smiling the whole way.

Restraint Can Be Liberating

As you've seen already, the Rails framework forces a lot of opinions upon its users. Rails developers have
no choice but to participate in MVC-guided design, use certain predefined naming conventions, and
place their code in pre-prescribed folders. Convention is the overarching belief driving this dictatorial
environment, but a more subtle driving attitude is the value of restraint. Convention attempts to relieve
the developers of having to perform the same type of work over and over again. Restraints combat the
need to spend your time worrying about issues that probably don’t matter anyway. (And those issues
that do matter are outsourced as decisions to third-parties such as the Rails Core team to think about as
a full-time job.)

Getting Things Done: The Art of Stress-Free Productivity, by David Allen, has become something of a cult
classic in the web developer world. The book promises to teach readers how to manage the torrent of
tasks and concerns of the modern lifestyle in a stress-free way. One of the primary revelations of this
book is the immense toll that “having things on one’s mind”” takes on our ability to think. When we are
constantly trying to remember who we are meeting tomorrow for lunch, when and where, and what
needs to be done to finish our project proposal, our brains are unable to devote their full attention to any
one particular task. The result is stress and a cluttered mind. Part of Allen’s solution is to keep a trusted
location where we dump our mental to-do lists without fail so that we can let go of them inside our heads
and clear our mind to focus on only what is in front of us. Proponents of meditation might give a nod of
recognition to this sentiment.

Restraining the process of web development to one fixed way of doing things is certainly extreme, but
it allows us to forget all the structural details of web development and focus on only our application. So
the many Rails restraints, such as having one fixed directory structure, one pattern of code organization,
one fixed request/response pipeline, and one method of accessing database data, are all tools to remove
an unexpected burden from the developer: choice. In an ideal world, the only choices left for the web
developer would be the application-specific ones, because those are the important and exciting ones,
anyway. Everything else is left to the worries of the framework designers.

As a non-Rails example of how restraint can be harnessed as a tool, read Google’s MapReduce paper,
available at http://labs.google.com/papers/mapreduce.html. Google employees Jeffrey Dean and
Sanjay Ghemawat realized one day that many of the processes governing Google’s calculations seemed
to follow a similar basic pattern, which they dubbed the “"Map-Reduce” pattern, consisting of two basic
operations:

a map (keyl, valuel) - > list (key2, value2)

a reduce (key2, list(value2)) - > list(value2)
By creating an entire distributed computing architecture around this pattern, they reasoned, employees
could focus on the particular details of their problem and completely forget about the details of the
distributed architecture on which Google runs. Maybe 70 percent of the code could be ported to the Map

and Reduce steps without any change, and the other 30 percent of the programmers would just need to
be a little more creative to make it work, the thinking went.

The plan worked. The two internally released the distributed MapReduce architecture and a set of APIs
that allowed employees to use it. Compared to the anything-goes freedom of normal programming

37

Chapter 2: The Rails Concept

that we are all used to, MapReduce is amazingly restrictive. All problems must be described as a series
of Map and Reduce steps (with a few extra possibilities). But the restraints of this framework created
an environment in which development could thrive. It exported the task of managing and processing
data to a team dedicated to just that task, and it freed developers to spend more time thinking about
their application-specific problems and less time about how to implement them. The result, as Dean and
Ghemawat write, was that:

The indexing code is simpler, smaller, and easier to understand, because
the code that deals with fault tolerance, distribution, and parallelization is
hidden within the MapReduce library. For example, the size of one phase
of the computation dropped from approximately 3800 lines of C++ code to
approximately 700 lines when expressed using MapReduce.

.. .We have learned several things from this work. First, restricting the pro-
gramming model makes it easy to parallelize and distribute computations
and to make such computations fault-tolerant.

When properly applied, restraint is a valuable development tool. At the sacrifice of choice, it provides
fixed structures on which to lean and depend and the prospect of a highly-predictable process that can
be maintained and optimized by a dedicated third party. Most of all, it provides a grounding stability
that permits the web developer to spend his or her time making important design choices about web
applications rather than design choices about the development environment.

You Repeat Yourself Too Much

We all know the feeling of “I've already typed something like this before. . .I should put a note here to
refactor it out when I have time.”” Often, the refactoring never happens, and our code ends up full of
statements like the following:

// TODO: Can we pull this routine out into some separate class?

Code repetition is plain-and-simple bad programming, and it should be avoided whenever possible. It
hinders the ability to maintain consistency in large programs and hurts your chances of being able to
change your program without great effort. Two scenarios frequently cause code repetition:

O Some entity must occur in several different places, but it isn’t easy to abstract this idea into a
class of its own.

0 A small fragment of functionality, useless by itself, must be applied to many different objects and
situations. This situation is one of the primary motivations for aspect-oriented programming
(AOP), a style of programming in which the implementation of cross-cutting concerns can be
separated from the locations to which they are applied.

Rails provides solutions for both situations in the places where they most often occur in web
development.

Repeated Objects

Repeated objects are addressed both with Rails” model design and view design. ActiveRecord models
generated by the script/generate command eliminate the need for SQL from within your web appli-
cation. SQL statements are a particularly sneaky form of code duplication in web applications because

38

Chapter 2: The Rails Concept

inline SQL is so accepted in interpreted frameworks. In reality, using SQL is dangerous because every
SQL statement you make encodes assumptions about your database schema, which may change. By
using ActiveRecord model objects to access and save your data, and by extending them to encapsulate
any advanced functionality you need, you avoid the need to repeat assumptions about your schema
structure throughout your application.

When implementing view code, developers are encouraged to split up different components of a view
into partials, small fragments of preprocessed code that atomically express a single concept, such as a
form or a list item. Although partials are not objects in the “object oriented”” sense of the word, they go a
long way toward preventing copy-and-paste style coding within your HTML. Think of them as the Rails
equivalent of light-weight UI widgets.

Code duplication is also battled in the view front with helpers, the small libraries that define methods
such as 1ink_to to assist view code to concisely express itself. In addition to the many helpers provided
by Rails, you can add your own in the app/helpers directory. Consider this popular method of creating
rounded corners around a div element. This technique has many variations; the one that follows is the
popular “Nifty Corners” by Alessandro Fulciniti:

<div>
<b class="rtop">
<b class="rl"><b class="r2">
<b class="r3"><b class="r4">

<!--content goes here -->
<b class="rbottom">
<b class="r4"><b class="r3">
<b class="r2"><b class="rl">

</div>

Combined with a bit of CSS styling, this HTML structure creates nice, image-free curves for your UI But
manually coding this HTML fragment every time you want rounded corners would lock your site into
this particular style and implementation. Instead, use a helper:

def rounded_corners (&proc)
raise ArgumentError, "Missing block" unless block_given?
opening = '<div><b class="rtop"><b class="rl"><b class="r2">"'
opening << '<b class="r3"><b class="r4">"'
concat (opening, proc.binding)
yield
closing = '<b class="rbottom"><b class="r4"><b class="r3">"'
closing << '<b class="r2"><b class="rl"></div>"
concat (closing, proc.binding)
end

Then, each time you need a rounded box, simply use the following:

<% rounded_corners do %>

<hl>Great Scott!</hl>

<p>This is a box with rounded corners!</p>
<% end %>

39

Chapter 2: The Rails Concept

Repeated Behaviors and Processes

Rails also provides AOP-style hooks in which to connect cross-cutting functionality that may apply

to several points in a program. Filters are bits of code that can be applied before, after, or around a
controller’s execution to change the way in which it occurs. Many controllers and actions, for example,
need to verify that a user is logged in before they can perform their function, both for security reasons
and for the sake of user-specific content. These operations can be defined in a private method on the
ApplicationController, the base class for all other controllers in your application, and then applied as
filters to any particular controllers that need them.

The cross-cutting concern of validating that a user is logged in, for example, might be implemented as
follows:

def check_authentication
unless session|:user]

session|:requested_uri] = request.env["REQUEST_URI"]
redirect_to signin_url

else
@me = User.find(session(:user))

end

end

This code will check for a session variable called user that contains the signed-in user’s ID. If it finds it,
then it loads the corresponding user object in the database into the variable eme. If it doesn’t find it, then
it records the URL of the attempted page and redirects the user to the sign-in page.

This functionality may be applied to any controller as a filter with the before_filter command, result-
ing in code that looks like this:

class AssetController < ApplicationController
before_filter :check_authorization
end

In this way, the authorization behavior is kept as a separate concern, relieving the need to copy and paste
it throughout the project and keeping the code in your controllers free of housekeeping code auxiliary to
their main purpose.

Testing Isn’t a Choice

40

Testing isn’t a very common practice in the web development world, but Ruby on Rails presents the
argument that it should be. The Rails team feels so strongly about the testing issue that you aren’t even
given the choice of whether to write tests. Each time you generate a model or controller, a test class for
that object is automatically generated for you. You may choose not to implement anything within that
test container, but it is there for you.

The rarity of automated testing in the web development world is not surprising given the way most web
application architectures are organized. The document-first model of programming leaves the different
concerns of a web application so intertwined that it is difficult to isolate any one of them and evaluate
its performance. A single file may contain authorization code, a form processing routine, SQL statements

Chapter 2: The Rails Concept

to insert new data into the database, and HTML to display the various possible outcomes of the form
processing.

On top of the intertwining of concerns, testers must deal with the pesky issue of HTTP. Web applications
are experienced over an HTTP connection, not directly, so a proper test must take this connection into
account. The level of effort required quickly expands here. The remote connection isn’t just an issue

of HTTP but also one of sessions. Some tests may be possible only as the interactions occur over time
between multiple users on a site. Each test user must have its own data in the database and authenticated
sessions during testing, so the tester must build sample data and session support into the framework. All
these characteristics unequivocally lead to the conclusion that testing a web app is a hard, hard thing

to do.

Despite the seeming impossibility of testing web applications, there is no environment in which testing
is more crucial. The web is an interpreted programming environment to the extreme. Not only are many
of the popular web development languages interpreted, late-bound, and dynamically typed, but the
output of these languages is just input to yet another interpreter — the web browser! Although your
PHP or Ruby environment is controlled and predictable, the web browser interpreting your data isn't,
and many web developers have bonded over the shared experiences of trying to manage the quirks and
eccentricities of each particular browser.

Using such a language, a developer has no way to verify whether a piece of code will function correctly
other than by trying it. Testing is nothing more than automating the trial process. Because it is the only
miner’s canary available to you by dynamic languages such as PHP and Ruby, you cannot afford not to
make extensive use of it.

The Ruby on Rails framework contains a mature testing library that addresses the complications of testing
web applications and hides as many of them as possible from the test writer. This library manages every-
thing from seed data (called fixtures) to session handling within tests, and the Model-View-Controller
division of Rails code paves the way for componentized testing. With this library, test developers are
able to concentrate on the content of their tests rather than on the complications of testing over an HTTP
connection. Chapter 12 covers a type of test-based development called Behavior-Driven Development
that provides a novel way to frame both the testing and development activities for a Rails project.

The Web Is a Set of Resources, Not Services

Two predominant styles of web services exist in the wild today: Web Services and RESTful Services.
Web Services, with a capital W and S, often refers to the WS-* series of specifications working their way
through the W3 C and sponsored by the big names in business such as Microsoft, Hewlett Packard,
and IBM. This is where you find SOAP and WSDL, two very capable albeit heavy-handed technologies
that work together to provide language-independent remote objects. REST, or Representational State
Transfer, represents the other end of the spectrum. Born out of a doctoral dissertation in 2000 by Roy
Fielding, REST in practical use refers to a style of design organized around the viewing and editing
remote resources rather than calling remote services. REST services do not attempt to provide remote
objects, but rather manage the transfer of object state over HTTP.

Both the WS-* collection of Web Services specifications and REST style of services provide a power-
ful ability to decouple components of an application across the network. However, although these two
schools sit alongside each other as complementary implementation strategies, they belong to fundamen-
tally different views of the direction in which web development should head, as illustrated in Figure 2-3.

41

Chapter 2: The Rails Concept

BankService Account

getAmount() (e Transaction g
setAmount(amt)

addTransaction() (< j— balance —
Bindings| ==
ipient_id
Application recipient_i
Server
WS- Style REST Style

Figure 2-3

The WS-* family of technologies tends to represent a world in which servers host capabilities, such as
purchasing a book, sending an e-mail, or performing a credit check. Each of these capabilities has certain
data type requirements, which are highly specified, and if these are met, then that service can perform
whatever it was you needed accomplished. Throughout the process, the client interacts with a remote
address that represents the service.

The REST view of the web represents the web as a set of resources. This view preserves the momentum
of the initial vision of the web as a collection of interlinked documents, except it expands the definition
of documents to include any structured resource. So a bookstore provides books, an ISP publishes e-mail
accounts and e-mail messages, and a bank provides transactions, credits, and debits. The key difference
is that REST is a world consisting almost entirely of nouns, but Web Services are full of verbs.

REST isn’t the end-all of design patterns, but it can be a particularly useful one for web applications.
Chapter 6 takes a closer look at RESTful web development and how to use this pattern in your designs.

Summary

42

So, there you have it: one part framework, one part language, and two parts state of mind. At first glance,
Rails is a development framework. It contains a set of scripts to create and manage web application
projects and a routing pipeline to handle requests and responses from the application you create. Three
separate frameworks provide well-integrated support for all the tasks common to web development,
from parsing request parameters to managing database schemas and applying layouts.

At a closer look, Rails appears as its own domain-specific programming language, too. It uses several
capabilities of the Ruby programming language to expose its APIs as if they were native language
keywords, and it uses the names of your objects and files to assume things about your intentions and
automate common tasks.

Finally, as your experience with Rails grows, you will see that Rails is also a collection of beliefs about
web development and the way web applications should be designed. Not all these beliefs are unique to
the Rails community, but nowhere do they all intersect and materialize into code as they do in Ruby on
Rails. In this light, Ruby on Rails is an excellent framework to master to learn about the cutting edge of
web design in general.

Chapter 2: The Rails Concept

No Silver Bullet

In 1986, Frederick Brooks published his now-famous essay, “Essence and Accidents of Software
Engineering.” In it, he argues that there will never be a single innovation that suddenly removes the
work and risk from programming. It opens as follows:

Of all the monsters that fill the nightmares of our folklore, none terrify more
than werewolves, because they transform unexpectedly from the familiar
into horrors. For these, one seeks bullets of silver that can magically lay them
torest. ...

So we hear desperate cries for a silver bullet — something to make software
costs drop as rapidly as computer hardware costs do. But, as we look to
the horizon of a decade hence, we see no silver bullet. There is no single
development, in either technology or in management technique, that by
itself promises even one order-of-magnitude improvement in productivity,
in reliability, in simplicity.

Skepticism is not pessimism, however. Although we see no startling break-
throughs — and indeed, I believe such to be inconsistent with the nature of
software — many encouraging innovations are under way. A disciplined,
consistent effort to develop, propagate, and exploit these innovations should
indeed yield an order-of-magnitude improvement. There is no royal road,
but there is a road.

Rails is no royal road, but it is a good road, with a highly evolved philosophy on web application design.
This is why, as a developer, learning which parts of the Rails philosophy work well and why they work is
just as important to your long-term success as learning the details of writing Rails-based sites in the near
term. As the Web changes, so will the abstractions needed to program for it. The long-term lessons that
Rails teaches us are not exclusive to Ruby on Rails, and they are portable to whatever great framework
comes next.

Optimize Your Coding Before You Optimize Your Code

As you read the rest of this book and practice its ideas, stay focused on optimizing the way you write
code, not the performance of the code itself. In other words, in this new era of web applications, good
design is far more important than good performance. CPU cycles get cheaper by the day, but, as Frederick
Brooks observes, the task of programming will always be one of time and effort. Our goals in choosing a
language and designing abstractions, therefore, should aim to improve our experience and effectiveness
as programmers.

With a good framework and well-designed abstractions, developer output soars. You can write a minimal
amount of code to express even complex concepts. You aren’t burdened by build issues and configuration
problems, and, it is hoped, your environment is aesthetically pleasing, driving you to strive for good
aesthetics in your own designs and to make your code stand the test of time. If all these conditions are
present, odds are high that you will create a well-designed application that can easily be changed and
improved over time to achieve your goals.

43

Chapter 2: The Rails Concept

44

If you run into performance problems, take it as a sign of success — it means that there is a growing
demand for your application. You'll need to work to keep up with that success, of course, but you will
have already won the hardest battle, and that battle is won with quality design. Dealing with success on
the Web only builds on the application that you've already designed:

O You can always optimize the little stuff. Identify the parts of your application that impose the
highest performance penalty, whether because they are computationally intensive or because
they occur many times. Rework these parts to run more efficiently by writing them in a lower-
level language or reconfiguring the way they are executed.

O You can always parallelize the big stuff. The web architecture is the ultimate parallelizable
environment, and a whole industry of specialized hardware exists to take the elements of a web
site and distribute its work across clusters. Ruby on Rails even has growing built-in support
for these types of setups, so when you are ready to scale, Rails is ready to scale with you.

The rest of this book will help you gain a deeper understanding of all three of Rails’ faces: a framework,
a language, and a way to think about application design. Some of the topics addressed are Rails specific;
others are relevant to anyone writing a web application. Some are about modifying the Rails framework
itself, whereas others are strictly about the code that goes into your web pages. In all topics, try to under-
stand how you can optimize your design and coding practices to get the most out of the code that

you write.

-

The Server as an
Application

W. Web boarded a bus heading into the city from the Rails compound. It had been a long orientation
week. He wasn't sure whether he was ready to shave his head as the rest of them had, but he liked a lot of
what he had heard.

Web was on his first trip for the group — a rally down in the Big City. It would be interesting, for sure.
He squeezed through the crowd to find a seat near the middle, right next to a tall man with a buzz cut
who happened to be named Rick.

Rick was riding the bus home from work. He had the reverse commute, living in the city but working
out in the country. It was an unusually crowded day for a Tuesday — people of all destinations packed
together, muffled music seeping from earphones, blank stares emanating from tired faces. Rick inched
sideways to create more room as a man wearing a papier-mdché globe around his body struggled to fit
into the center-facing seat next to him.

As the bus pulled away from its next stop on the city’s edge, one last passenger, dirty and tattered, pushed
his way onto the bus.

““Move it!"" he shouted gruffly as he pushed a small boy and his mother out of the way, the smell of liquor
on his breath.

Rick had just received his black belt in Karate and was not about to watch this man bully a child and
his mom. To be honest, he was a little excited at the chance to put his hard-earned skills to use. Rick rose
from his seat, chest out like a Marine’s, and moved swiftly down the bus toward the offender. His every
move signaled confrontation.

“Hey!"" a voice rang out toward the disheveled man.

But the voice was not Rick’s. It was that of an old woman observing the situation from the rear of the
bus. The old woman smiled warmly, leaning at an angle to see through the crowd.

Chapter 3: The Server as an Application

46

“Young man, I have a seat for you right here!”” she shouted up to the front of the bus, patting an empty
seat next to her.

The man paused, his eyes darting back and forth, and then he made up his mind. He tromped his way

unsteadily past Rick to the back of the bus and sat down next to the old woman. ““Aren’t you glad spring
is finally here?”” the elder asked with excitement in her voice. “’I'm on the way home to garden with my
husband. You should see how happy he is when he gardens, and the hydrangeas are just about to bloom!”

The man wrinkled his face, blinking, and his lips began to quiver. Within seconds, a tear had broken free
and began to roll slowly down his cheek.

“I was a husband once, and my wife gardened with me every spring,”” he managed to stammer. ‘I lost
my job last year, and then lost everything.”

The old woman patted his shoulder, a small gesture to acknowledge his grief. And as the two talked and
the story unfolded, the rest of the bus silently listened in, faces softening with compassion.

At the next stop, W. Web watched curiously as Rick stepped off the bus. Five minutes and two miles ago,
the stranger sitting next to him had been ready for a fight, but the man getting off the bus was different,
with all the look of someone contemplating the hard blows life can deliver.

— Story adapted from Steve Hagen

Whoa. W. Web’s adventures are getting a bit heavy for a technical book, and this is only Chapter 3. But
his bus ride brings up an important point: Our assumptions and expectations play a powerful role in
how we think about and experience the world and the ways in which our plans for action unfold. Two
men on the bus experienced the same event with two different ground assumptions about the world. The
situations that manifested for the two were entirely different as a result.

Software design and development follow this same pattern. At the beginning of a development project,
before any design is laid down on paper, we have already made several important choices even if we
don’t realize we have made them. These choices — that is, our assumptions about the way that software
should be developed — shape the direction of the design and development process.

When programmers make these choices deliberately, we call them abstractions. Many people think of
programming abstractions as class definitions that encapsulate some piece of functionality, but classes
and objects are just the actors in your play. Abstractions also determine the rules of the game, all the way
from turning voltage into binary logic to allowing memory allocation and database access. Abstractions
encompass every environmental detail we have constructed to help us write computer programs.

It isn’t surprising, then, that choosing the right programming abstractions is perhaps the most important
and influential step in the software development process. It should always be done intentionally instead
of left to our unconscious assumptions. Good developers don’t write more code than poor ones; they
paint better abstractions so that each line of code they write is more meaningful.

This chapter examines the basic abstraction that defines Ruby on Rails more than any other: that a web
site is actually a Model-View-Controller (MVC) application.

This choice seems innocuous at first, but as any script-turned-Rails developer will tell you, it has far-
reaching effects on the way you design and develop your code. This chapter takes a quick, light-weight
look at what the Model-View-Controller paradigm is and why it aligns with the Web so well. I also cover
some project design and refactoring strategies to help you on your way toward MVC-grounded design.

Chapter 3: The Server as an Application

Model-View-Controller: The Abbreviated
Version

The Model-View-Controller pattern is one of the most well-known and broadly applied design patterns
in software engineering. This pattern is used in applications that are information and usercentric. These
applications store bits of information that users want, and they provide users with access to that informa-
tion through a user interface. The MVC pattern guides the way this type of application’s functionality is
organized based on the observation that all such applications are composed of three fundamental parts:

Q The Model: The objects that represent and encapsulate the fundamental ““things” that your
application is all about

O The View: The code that your application uses to interact with the user
Q The Controller: The code that performs operations on the model, such as finding particular

model instances or changing a piece of data

Inherent in this organization of a piece of software is the dependency graph of these components. Keep-
ing the components free from bad dependence on each other is just as important as knowing which parts
of your program’s functionality to place in each. Figure 3-1 shows the idealized dependency graph.

Translator

pde A

Persistence Mechanism
(file, database, etc.)

Figure 3-1
This graph states:

0 The model depends on nothing else in your application.

O Persistence is accomplished with a translator that understands both the model and the
persistence mechanism.

Q The controller and view depend on and use the model.
0 The view depends on the controller, makes calls into it, and displays the results.
In practice, especially in the web world, it is a bit harder to determine exactly what depends on what.

The model standing on its own without any dependency on the view or controller is the one part of this
design that generally remains true in any MVC implementation. The relationship between the view and

47

Chapter 3: The Server as an Application

controller is a bit more complex and largely depends on the way you choose to write your application
and the environment it is built in.

Although MVC isn’t the only way to organize a program, it is a proven and consistent methodology that
makes software easier to write and safer to maintain. Users of J2EE and Java Swing, for example, will be
right at home with these benefits, because Sun has been a strong supporter of the pattern in its technolo-
gies. Designing software components on top of the MVC abstraction leads to a natural modularity that
makes future programming tasks fall into place with little effort:

0O Do want to support saving and loading application data to and from a file? Just implement a
translator for your model layer that writes to files.

QO Do you need to implement a command-line interface? Just reuse the model and controller
without the view.

QO Do you want to create a demo for a trade show? Use the view and controller with a mock model
behind it.

0 Need to turn your application into a networked service? Replace the view with service bindings.

These scenarios are all straightforward decisions when software has been split along the three boundaries
of model, view, and controller.

In addition to providing abstractions on which to build your software, the MVC division of labor also
encourages developer specialization within a multideveloper project. The types and styles of program-
ming used to perform UI tasks, data tasks, and business logic tasks can be very different. In the Java
world, it might be the difference between specializing in the Swing framework or learning to be an
expert in Hibernate. In web programming, these different tasks even use different languages. An MVC
approach to software design makes it easy to determine which developers are right for implementing
which pieces of code because it aligns with the programming specialties that already exist.

As with many good ideas in life, the code concept of MVC is short and sweet: a breakdown of roles that
describes a broad range of applications very well. The next step is to understand why the MVC idea is
such a great fit for the Web and how you can use it effectively in your web application designs.

MVC and the Web

48

The MVC programming abstraction that Ruby on Rails employs fits particularly well into the Web
because the physical architecture of the Web is already MVC in everything but name. Regardless of
whether you are implementing Code-First applications out of the /cgi-bin directory or Document-First
applications with files such as index.php, you are working on top of a fundamentally MVC-biased archi-
tecture without even knowing it.

Here’s why: Web applications, by definition, are separated into client and server. The client browser
requests and displays pages of information to the user (the view) and turns the user’s actions

into requests back to the server. On the server side, some piece of code receives the web request and
decides what to do (the controller). This almost always involves performing database operations (the
model) and then generating a web page to send back to the user (the view again). In light of the physical
architecture on which web applications operate, it seems almost inevitable that MVC-style programming
would find its way to the Web. The two are a star-crossed match. These three components of every web

Chapter 3: The Server as an Application

application — the database, the client, and the server — present a division of concerns that tracks almost
exactly to the Model-View-Controller paradigm.

Also unique to programming for the Web is its multilingual nature, which aligns nicely with the division
of MVC components. In traditional desktop graphical user interface (GUI) applications, MVC is just a
way to organize code; all the components usually still use the same programming language. On the Web,
the Model, View, and Controller each use a mix of domain-specific languages to achieve their goals. The
result is more languages for developers to learn, but much less clutter and effort required to express
oneself when developing, because each component is written in a language designed specifically for that
purpose.

The following table shows the Model-View-Controller architecture breakdown as applied to the Web.

Model View Controller

What The objects The set of HTML The code that accepts web
representing the templates, CSS styles, and requests, manipulates the
domain of the web JavaScript code that model, and renders a view
application. These creates the user experience to send back to the user.
objects encapsulate on a web site.

tables in a database.

Example User A user’s profile page An account controller to
Post A blog article manage sign-ups, sign-ins,
Comment An “add comment”” form and lost passwords.
Auction An auction detail page
Photo A photo thumbnail

Language Ruby/PHP/Java/etc. HTML, CSS, JavaScript Ruby/PHP/Java/etc.

for object repre-
sentation SQL for
object persistence

This breakdown shows all the components necessary for a complete application, from data to display.
The fact that it is distributed across many machines and implemented over a client-server architecture is
largely an unimportant detail that you don’t need to focus on until you're ready to make the transition
from development to deployment.

Notice, too, the difference between thinking of a web application as consisting of “pages’” and as consist-
ing of “views.” Views are not just pages. More accurately, they represent the rendering of a particular
concept within your application. The bits of code stored in each view object could be as small as an
image thumbnail or as large as a full web page. (When the view is small and meant only to be composed
into larger views, we call it a partial.) Page-sized views wrap around one or more smaller object-level
views (partials) and contain the scaffolding necessary to apply the right style sheets and load the right
JavaScript files.

There is another difference between MVC views and the documents that make up the view of document-
first code. Although the contents of your Rails views are implemented in document-first fashion, having
the ability to contain embedded Ruby code, the informal contract is that this code is allowed to make
decisions related only to display. No model operations, disk access, authorization decisions, or session

49

Chapter 3: The Server as an Application

management should be done from within the view. Technically, any operation possible in the Ruby
language can be performed embedded in a view, but write this out of your mind as a possibility. Views
exist only to display information and solicit input.

The argument for MVC-guided design on the Web is largely the observation that it seems to fit the
underlying architecture of the Web very well. Developing with this underlying MVC architecture in
mind is the hybrid approach that is beginning to change the way web applications are designed and
written. So, how do you design such an application?

The MVC Design Process

50

You've got an idea, a blank piece of paper, and a pencil, and you are ready to begin designing your web
application. (You do design before you code, right?) No two people agree about the best order or strategy
for finding and identifying the right M, V, and C. In reality, the different components of a design emerge
in parallel in your subconscious and float up to the surface somewhat randomly. With that admission,
here is a design-time workflow that many use and find effective.

1. Pregame warm-up. Sit back, clear your mind, and think about the goals of your applica-
tion. Then visualize yourself in the shoes of one of your users. Run through a few tasks
with your application. Encounter a problem. Add some new data. This will get you into
the mindset of thinking about the components that need to fall into place to make your
application run.

2. The model. Identify the fundamental “‘things” that your application will deal with. These
are your model objects. These do not need to correspond directly to tables in a database, but
they likely will. Also, don’t worry about the properties on these objects just yet, although do
start thinking about the relationships between them.

3. The static HTML prototype. After you've found the muse driving you to create this applica-
tion and thought about it enough to identify the fundamental model objects that comprise its
functionality, take a step back to the user’s perspective and plan specifically how the user’s
needs drive him or her to interact with those objects. Develop a series of static, CSS-backed
HTML pages that could be used in a pinch to show the site concept to another person. This
prototype will inspire and drive the rest of your server-side development.

4. The controllers. Using the static HTML prototype as a guide, think about the main feature
areas of your application. Each one of these areas becomes a controller, containing all the
entry points and business logic necessary to address that area.

5. The actions. For each controller, think about the actions that users will need to perform. In
Ruby on Rails, each action corresponds to a public method on the controller. Some actions
correspond to web pages, but others simply perform a function and redirect a user to some
other page based on the result. In general, actions that don’t create or modify data should
have associated RHTML files, and actions that do create or modify data should just redirect
or render the views of other actions. This rule of thumb helps minimize code duplication and
the overall amount of HTML code that needs to be written.

6. The icing. Not every page on your site is dynamic or interactive. These static pages, usually
with names like “About” or ““Contact,”” or even your main index page, can get left behind by
the preceding development steps. Fill in the gaps in your views by listing all the pages that
don’t correspond to actions on a controller.

Chapter 3: The Server as an Application

Follow these steps and you will create a blueprint to guide your coding. This design step can be done
completely independently of your HTML design and development because it concerns the organization
of your web application code rather than the details of its presentation.

The View Is Your Spec

In traditional application programming, the coding usually begins by creating Unified Modeling Lan-
guage (UML) diagrams, designing class interfaces, or by creating the data model. Web programming
offers a somewhat different possibility, though, that seems backward from the standpoint of traditional
application development but can be used with great success: Build your application interface to comple-
tion before you start coding.

As domain-specific languages, HTML and CSS are amazingly efficient at what they do. A good web
developer should know how to create complex pages with HTML and CSS manually, and when you gain
proficiency in them it can be a lot of fun, too. So why spend time writing stuffy documents about how
your application should work when you can simply define it functionally in the very same languages
that will be used to implement your application?

When your specification comes in the form of the actual HTML interface to your application, there is
little ambiguity as to what needs to be implemented on the server side to support the interface. Each
server-side development task should be directed at enabling the dynamic functionality of one element of
your static HTML spec. Piece by piece, the spec will come alive in your real application.

Using your view as the specification in traditional application development is difficult because it
requires the developer to write stubs and mock objects to stand in for the controllers and models that
provide the necessary flow to make the view possible. At the level of the HTML page, the web application
is divorced from these concerns, and this can become a great benefit for these purposes. What would have
been mock controllers and model-provided data are just plain strings in the HTML page, meaning that
view development can take place entirely without having to worry about coding stand-ins for these
objects. When it comes time to integrate the sample view with the real code, just replace the dummy
data with calls into the variables and methods of the running model objects as though you were doing a
fill-in-the-blanks exercise.

Another reason that the HTML-first approach can be a good one is that web applications are the ultimate
in user-focused development. Until you have an interface to expose them, few of your coding accom-
plishments matter. When developers start coding with the models and controllers, they have a tendency
to begin redesigning and optimizing the application before they even have an interface for it. Starting
up front with the interface emphasizes this fact and prevents you from falling into the common trap of
cyclically tweaking your design without making real progress that the user can see.

Example: Social Networking for Cooks

Consider the example of a social networking site for cooking enthusiasts, something akin to OpenSource-
Food.com. In this example, the goal is to allow users to share and discuss their recipes and food photos,
as well as to record their favorite chefs and interests on the site.

Here is how the five MVC-guided design steps described previously might be applied, starting with
Step 1 — the warm-up.

51

Chapter 3: The Server as an Application

Visualizing a Run-Through

Ah, your new Shrimp Scaloppini recipe. How would you add it? You’d want others to be able to search
for recipes including shrimp, which means it might be a good idea to line-item the ingredients. And users
should definitely be able to rate and add comments to your recipe, so you need to have a facility for that.
Each recipe should also have a picture that makes everyone’s stomach growl, of course. Okay, enough
visualizing — time for the design.

The Model

52

What are the ““things” needed to make this application work? User objects, definitely, and recipes, of
course. The instances of these two primary objects will also own a number of other objects: photos,
ratings, and so on. The following table lists some of these model objects.

Model Object Purpose

User Contains basic information about the user.

Profile Contains a user’s interests, favorite cuisines, and thoughts on cooking.
Favorite Stores bookmarks to a user’s favorite recipes and chefs on the site.

Recipe Owned by a user. Contains the instructions for preparing a dish.

Ingredient Owned by a recipe. Contains one ingredient and the amount for that recipe.
Photo Owned by a recipe. Contains a photo with a caption for that recipe.

Rating Stores a user’s rating for a particular recipe.

Comment Stores a comment about a recipe.

Each of these model objects is created with the script/generate model command, which creates both
the model and an empty schema migration for you to fill in (more about these in Chapter 11, “How I
Learned to Stop Worrying and Love the Schema”’). ActiveRecord (the library that handles your model
objects) will take care of all the SQL details as long as you write down the required fields in the migration
and the relationships and validations for each in the model.

Most of the objects in this example are tangible, but it is important to remember that the model also
contains “relationship objects”” that record the existence of a relationship between two other entities. For
example, each instance of a Favorite object stores a relationship between a user and a favorite of that
user. Other examples of relationship objects might be a GroupMembership object, which records a user’s
membership in a particular group, or a Friendship object, which records the fact that two users have
listed each other as friends.

On the schema level, these relationship objects usually correspond to “join tables,” whose name comes
from the SQL JoiN command. The purpose of a join table is to provide the information necessary to
perform a join on two other tables. The table backing the Favorite model in this example is what Rails
calls a polymorphic join table — it permits joins using a two-part key that specifies both the type of

Chapter 3: The Server as an Application

object and the ID of that object. Using a polymorphic join table, the User object can list any other type
of object as a favorite, whether it is a photo, a recipe, or another user. The following table shows the
hypothetical table that would be developed to back the Favorite model object.

Field Type Description

id integer Primary key of this favorite record

user_id integer The user that owns this favorite

favoriteable_type integer The object type of the favorite item (such as User or Recipe)
favoriteable_id integer The primary key of the favorite

You're worrying only about design right now, though — implementation strategies come later — so just
identifying and creating empty relationship model objects is fine. Onward with the HTML prototype.

The Static HTML Prototype

Stop! If you are like me, you are probably getting excited about the model and want to begin imple-
menting some of the methods on these model objects needed to make them tick. But you can’t get ahead
of yourself and start implementing code before having a known reason. First, you must develop the
static demo of your cooking site so that you know how users are going to interact with it. This static set
of HTML pages will serve many purposes: It will be a concept demo to show to friends and clients, a
specification for your server-side development, and an evolvable prototype to pull apart and turn into
RHTML partials later.

The focus of this site will be (1) amateur chefs and (2) the recipes they love. Therefore, the only types of
pages that you will be providing are user related and recipe related. So you'll create a demo index page
that mashes up the latest items added to the site, a page that shows information about a user, and a
page that shows a single recipe, with pictures and comments. You also need to be able to create recipes,
search for recipes, view the search results, and view your list of favorites. Each of those also gets a concept
page. Finally, users need an easy way to sign up for a new account, necessitating a page for that as well.

When these concept pages are complete, you'll have a rough draft of the main pages on the site that will
guide your decisions about how to design the controllers and implement both controllers and models.

The Controllers

Your controllers represent the main groupings of control for your cooking site. Notice that these do not
necessarily match up to the models, although some designs (and particularly RESTful ones, described
in Chapter 6, “Resources and REST”") would encourage that type of design. For this application, you’ll
stick to only a few controllers: one for each of the two main themes of the site (users and recipes) and
two others to lessen the load of features that needs to go into those two. An account controller will
handle the housekeeping tasks associated with user management, and a favorites controller will con-
tain the logic necessary to manage a user’s bookmarks within the site. The following table depicts this
breakdown.

53

Chapter 3: The Server as an Application

Controller Purpose

AccountController Handles all things related to account maintenance, such as sign-ups,
logins, and forgotten passwords

UserController Displays profile information and handles user searches
FavoritesController Handles adding and recalling a user’s favorite items on the site
RecipeController Allows users to add new recipes and lets other users view, comment on,

and rate recipes

The Actions

The set of actions on each controller describes the functions that that controller performs. The table that
follows contains the actions that might be on your Recipe controller. It has five actions that result only

in information being displayed (index, show, find, new, edit) and four actions that result in data being

created or modified (create, update, rate, comment).

Each of the five actions that only display information will correspond to one of the concept web pages
you designed. The four actions that change data in the database will not have any corresponding HTML
but instead will redirect to some other page after their completion, optionally providing a status message

as well.

RecipeController Actions Purpose

index Displays a summary page of the new, most viewed, and
highest-rated recipes.

show Displays the recipe specified by the request parameters.

find Processes and displays the results of recipe queries.

new Displays the form for a new recipe. This form includes facilities to
upload photos of that recipe’s finished dish.

edit Displays the form for editing an existing recipe.

create Processes data for a new recipe and attempts to create it.

update Processes data from an edited recipe and attempts to modify it.

comment Allows signed-in users to comment on a recipe.

Rate Allows signed-in users to rate a recipe.

The Icing

Finally, make a list of the icing pages that are auxiliary to your application’s functionality but essential to
its purpose. The example cooking site is about cooks and recipes, but you also need to create a rudimen-
tary support system and a personality for the site so that users know how to think about it. Pages such as

54

Chapter 3: The Server as an Application

a FAQ and a Contact page will allow users to find information about how the site works and participate
in the development process by offering suggestions.

A bit of wit, humor, and personal story also help users understand why the site was created and creates a
more personal connection between you and them. In the new economy that has emerged on the Internet,
this touch of personality can make a big difference in terms of how your site is publicized and shared
from user to user. Give your users an idea to believe in, not just a set of functionalities.

Managing the Application Lifecycle

The following topics relate to the task of designing and maintaining an application over time. There are
many different design methodologies, all of which can be used to varying degrees of success in their
own ways. As an environment filled with dynamic languages, web development often tends to be paired
with the more dynamic software development mindsets, such as Agile. As you apply the MVC pattern to
your design, consider applying the following tips from the Agile development community to the overall
process you use to design and code.

Think Agile, Not Engineered

The steps covered in this section are a useful guide for structuring your planning, but always remember
that good ideas and good code often come in bursts. The traditional waterfall method of programming,
in which developers march monotonically through a rigid set of design and development steps toward

project completion, doesn’t line up with the way programming actually works in practice.

Agile software development refers to an entire framework for managing the lifecycle of a project, but it
also refers to a grander idea about the way design and coding should work. The following is the Agile
Manifesto (http://agilemanifesto.org), written by a collection of development luminaries during a
winter retreat aimed at finding a common voice through which to describe the ideals of modern software
development:

The Agile Manifesto
We are uncovering better ways of developing software by doing it and helping others
do it. Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

Although “agile” as a development methodology offers many processes that can be valuable to devel-
opers, the most important part of agile development is conducting your development according to
the ideas in this manifesto. All of its points center around the recognition that development is a fluid

55

Chapter 3: The Server as an Application

and inherently human-driven process, and that attempts to control the development process through
extensive planning and tome-sized documents don’t generally work (refer to the section ““The View Is
Your Spec,” earlier in this chapter).

So, plan a few alternative organizations and sleep on them. Come back later to pick the one that you
think will work best, but don’t invest yourself emotionally in your choice. Never be afraid to revisit and
change a design after you've started coding. Above all, design your code with an expectation that things
will change.

Think Controlled, Not Organic

A spec-heavy approach to web development probably is not the best use of your time, but that doesn’t
mean it is a good idea to eschew design altogether. We’ve all stayed up late into the night coding as
quickly as we can think (sometimes inspiration won’t wait) but night after night of this sort of coding
and your design begins to look like a Rube Goldberg contraption. So although you should take a relaxed
approach to your web application design, you should respect your flexibility by always sketching your
coding plans in advance. If you are feeling especially inspired, even write tests for your sketches before
you code (but realize that overemphasis on test-writing can become just as much a stumbling block as
overemphasis on specs).

Treat each new feature or change to your project as a full trip through the design and development
process. Begin by listing the reasons that this change is being made and by sketching your designs. Also
make a “collateral damage” list on which you jot down all the secondary changes that you will need to
make because of the one you are currently working on. A small change to your application (for example,
renaming a field name in your database) can often require adjustments throughout your application,
so it is important to keep a scratch space open to list where these changes are needed as you remember
them. Finally, evolve the implementation of the new feature by coding it with incremental improvement
in mind. If you have been attentive at writing unit tests, failing tests can be used to identify missed areas
that need updating and passing tests can be used to bolster your confidence in the change.

A final suggestion for successfully evolving your design over time is to always discuss your changes
with someone else before you make them. Depending on the type of change, you may want to discuss
it with a nontechnical friend (or your customer) or a technical friend who shares an understanding of
web application design. Explain your ideas and justify why you think this planned change is better than
the existing system and other alternatives. Talking a design over with someone is often the best way
to identify pitfalls of a design, and it forces you to think through the design enough to communicate it
effectively.

Planning and discussing changes before they are made takes time, but if you invest effort into controlled
development, then you will thank yourself two months down the line.

Beware of Open-Heart Surgery

56

In contrast to the rigid and statically typed languages of the computer desktop, the Web is a loosely
coupled, run-time-failing world. Further, the dependencies between components of your application
extend past object design and syntax and into multiple languages and file organizations. This makes for
a dangerous environment for changes. So when you get that bright idea to make a structural change to
your code, but that one change will require rippling changes throughout the rest of your project, proceed

Chapter 3: The Server as an Application

with caution; this type of open-heart surgery can usually be avoided if you plan your implementation
carefully.

Whenever you find yourself planning an enormous change to your design, take a few steps back and
strategize how this change could be broken into a series of evolutionary steps. Each of these smaller steps
should move you toward your eventual goal without breaking the functionality of your application. After
each of these changes, test your application to ensure that the change didn’t adversely affect anything.
This approach might take a bit longer when nothing goes wrong, but it ensures that you always have a
working application so that if something does go wrong, it won't take long to debug.

Summary

The abstractions that you use to guide your design and development are as important as your develop-
ment decisions themselves. The idea of the web site as a Model-View-Controller application is one of the
cornerstones of the Ruby on Rails framework and one of the main distinguishing factors that propelled
Ruby on Rails to be more than just another framework. Learning how to use the elements of MVC-guided
design to your advantage allows your code to convey more meaning in fewer lines. Practicing flexible
but deliberate design and development also helps keep your code on track and prevents you from falling
into many of the traps that come with the territory of web development.

This chapter provided guidance for the high-level design of your site: identifying the site’s main purpose,
developing a visual specification for it, and breaking it down into empty model, view, and controller
components that you will fill as development progresses. The next chapter examines some of the details
of implementing the design that you create.

57

Getting the Most from M,
V, and C

The bus continued down the road and eventually onto a bumpy highway. Between the hum of the wheels
and the grain of the road shaking his seat, Web began fighting to keep his eyes open, and before he knew
it. ..

“Excuse me,”” said a frail voice, its owner tapping him softly on the shoulder.

Web opened his eyes, momentarily confused about where he was. He looked with the distant gaze of
interrupted sleep at the elderly man who must have taken the seat next to him.

“I'm sorry to wake you. Your head was getting heavy on my shoulder, and you were drooling on my
coat.”

Web blinked and felt consciousness returning to him. He hadn’t even seen the man get on.

“I'm terribly sorry,” he said suddenly as the ability to speak clicked in. “’It’s been a long week. I'll try my
best to use the window.”

And then, to try to redeem himself, he said, “’I'm the World Wide Web, you know.”
“That’s nice,”” the man smiled through his thick bifocals. I thought you looked like a Jeffrey.”

Web gazed out at the road passing by and thought of his week at the retreat. Everything had been so
regimented, yet it all seemed to work together smoothly. The more he learned how to fall into their pattern
of doing things, the less he found himself distracted by the day-to-day worries that had once kept him
busy.

It was still a ways before Web's stop: the protest down in the Big City. The members at his new camp
said they were pleased at how well he understood their beliefs, and they wanted him to represent them at
the event.

Chapter 4: Getting the Most from M, V, and C

URLs were planning to gather to protest for equal rights, it seemed, right under the marquee at Appli-
cation Square. His job was to attend the protest and attempt to identify and arrange a meeting with the
leaders of each respective group that was there. Web still wasn’t sure what to do after that, but his new
friends had assured him that the rest would take care of itself.

Learning to think about web applications in the context of MVC is the most important step in good Rails
design. This overarching design strategy shapes everything else that you code and, done correctly, will
keep your web applications easy to code and maintain. This chapter discusses what comes next: the
design issues that crop up when building your models, views, and controllers.

The greatest task you face from a design standpoint is arranging your code so that it makes sense, mini-
mizes waste, and stays true to the MVC pattern. Sometimes this is easy (HTML always goes in the view),
but other times it isn’t so apparent (when and how should you check for SQL injection attacks?). As
always, part of the fun is also learning where you can lean on Rails” automation to keep your code con-
cise and easy to read. So follow along as I tackle M, V, and C in order and look a bit more at how they
are coded.

The Best APl Documentation Is Free

60

This is a book about design, not syntax, but it is tough to talk about design without a knowledge of the
language and API underneath. Although much of the content of this chapter uses the Rails API (this is
a Rails book, after all), it does so without much explanation of the code that demonstrates the concept.

Luckily for you, the best Rails API documentation is free! So instead of simply reprinting the excellent

API documentation that already exists, this chapter provides the following table pinpointing where to

find the documentation for each type of task.

Area Topic API URL (Relative to api.rubyonrails.org/classes)
Model ActiveRecord /ActiveRecord/Base.html

Model ActiveResource /ActiveResource.html

Model Validations /ActiveRecord/Validations/ClassMethods.html
View ActionView /ActionView/Base.html

View RJS http://api.rubyonrails.org/classes/ActionView

/Helpers/PrototypeHelper/JavaScriptGenerator
/GeneratorMethods.html

Controller ActionController /ActionController/Base.html

Controller Filters /ActionController/Filters/ClassMethods.html

Controller Response Types /ActionController/MimeResponds/InstanceMethods
.html

Controller Routing /ActionController/Routing.html

Chapter 4: Getting the Most from M, V, and C

The Model

After you have identified the model objects that your application needs to help it run, where do you
go next? Designing and working on the model can be a lot of fun because it is at the heart of your
application — a lot of good ideas without all the tough work of dressing them up in HTML. This section
talks a bit about the model development process and proceeds with some tips for making models more
effective.

First, always remember that the model is not your database, nor does it need to be a set of function calls
that just wrap around your database (even if this is often the case). The model is the set of objects that
represent the items that your application internals need to operate and the ways these items interact with
each other. The fact that it probably persists to a database should always be considered secondary to that
goal.

Although the model exists as an independent abstraction from your database, it is impossible to separate
the model and its performance from the underlying database that likely provides its data. If you use Ruby
on Rails without any modification, you will be using ActiveRecord for your models. Models created with
ActiveRecord follow a particular pattern (the Active Record pattern, in fact) defined by author and design
guru Martin Fowler as follows:

An object that wraps a row in a database table or view, encapsulates the
database access, and adds domain logic on that data.

ActiveRecord models are thus intimately tied to your database schema because each model object is
intended to abstract rows of one table in your database. ActiveRecord is different from other ORM pack-
ages, though, because of the degree to which it automatically integrates with your database, with minimal
explicit configuration. This automation makes for model development that is split evenly between the DB
and your Ruby code: getter and setter methods are defined implicitly by the existence of fields in your
database table, and anything more complex than a get or set operation is defined in Ruby.

In much the same way as does the overall flow of Rails application design, developing a model with
ActiveRecord follows a predictable pattern:

1. Determine the name of the model object. Run the script/generate utility to generate a
model object and an ActiveRecord migration.

2. List what fields your new model object has. Open the schema migration in the
db/migrations directory and add your model’s fields as column definitions in the table
definition that will persist instances of that model.

3. Specify any associations this model object has to other model objects. Open the model
definition from the app/models directory and use the ActiveRecord Associations module
to describe the nature of the relationship of this object to others, such as has_many :tasks,
:through = > :projects.

4. Specify any validations that should be performed on instance data. Beneath the associ-
ations that you've defined, use the ActiveRecord Validations module to list the validations
that must occur before objects are allowed to be created, saved, or updated.

5. Write any custom methods needed on your models. Most of the topics in this section of the
chapter deal with this step; everything that happens after you've finished the basics and

61

Chapter 4: Getting the Most from M, V, and C

are ready to enhance your model beyond just simple getters and setters. Rails is sometimes
referred to as a “model-heavy”” framework because of the amount of development that hap-
pens in this step.

The work done by these steps yields more than just database access for your web site; it provides you
with a group of interlinked objects representing the domain of your application that can be used inde-
pendently of your Rails application. This means that any external reports you need to generate, cron jobs
you need to run, or unit tests performed outside your web application all benefit from the model that
you've created. Remember to treat this ordering of steps as a trip through an agile design cycle rather
than as a one-time process that yields a working application. As each new model is added to the applica-
tion, others will likely have to change. You can use the preceding list of steps to guide those changes and
help ensure that you do not miss anything.

Absent from this list of steps is any mention of testing. That step is left out because depending on your
development methodology, it does not fit easily into a strict ordering of steps. Some developers write tests
before they code; others write tests after they code; and still others write tests only when they encounter
a rough spot or a bug. Chapter 12, “Behavior-Driven Development and RSpec,” presents a relatively
new testing methodology that can be used to frame your development process in terms of behavioral
expectations.

The following sections explore how to make the most of your model, both choosing what code goes in it
and how to make that code effective.

Model Objects Should Understand Each Other

62

Model objects should know how to interact with each other so that other areas of your application don’t
have to. Whereas most areas of your application follow a strict object hierarchy, with each component
attempting to stay ignorant of others for encapsulation’s sake, the model is a bit different. Most rela-
tionships between model objects are bidirectional — for example, a has_many is usually paired with

a belongs_to — so you don’t need to follow much of a dependency hierarchy. Therefore, encourage
yourself to let your model objects get friendly with each other and learn to work together.

Model development is often a large development task that goes far beyond defining associations and
validations. A developer’s first experience with Rails development doesn’t usually highlight this fact. A
simple blog application, for example, uses the basic interaction between models, views, and controllers in
Rails. It might contain a few associations — a post has_many comments, a post belongs_to user — and
a few validations, but that is pretty much it. The body of your model classes likely ends up as nothing
more than a series of macros calling into the ActiveRecord APIL

It is easy to extrapolate from these basic tutorials and applications that the model is a passive piece of
code and that the real action occurs in the controller. Thinking back to the idea of component hierarchy,
this is an easy trap: Models just act to passively ferry data to and from the database, and the controller’s
job must be to perform actions on that data. This isn’t the case at all, however — a well-written model is
filled with implementations for all the actions relevant to that model, and the controller’s job is to know
when to ask it to perform which action.

To get the most mileage out of your model code, use your models as a place to store all model-specific
code even if it requires multiple models working together. For example, don’t be afraid to create instances
of one model class within the body of another. Or load and modify associated data as part of a callback

Chapter 4: Getting the Most from M, V, and C

on a particular model field. Although you can certainly chain several related model operations in the
body of a controller action, it often makes a lot more sense to build the operations straight into the model
and leave your controller free of clutter.

Here is an example: Imagine you are writing a travel journal application that allows users to write
geocoded blog entries as they backpack around the world. Tracking a person’s current location is done
via three separate tables in your database: users, visits, and locations. Users have visits, and visits have
locations. In addition, the user table stores the ID of the current visit for lookup efficiency. The partial
schema is shown in Figure 4-1.

visit_id
user_id location_id I location_id
user_id
current_visit start_date name
end_date

Figure 4-1

Say that you want to create a UsersController: :set_location function that takes a location ID and
updates the database to reflect that the user has made a visit to a new location. The wrong way to imple-
ment the meat of this function would be in the controller, such as the following:

class UserController < ApplicationController
def set_location
@location = Location.find(params]:id])
Assuming variable @me has been set by a filter

Retire the old Visit object if necessary

if @me.current_visit
@me.current_visit.end_date = Time.now
@me.current_visit.save

end

@me.current_visit = Visit.create(:location => @location)
@me.save
redirect_to user_url (Gme)

end

This type of implementation mistakenly places functionality that is intrinsic to the model’s behavior
inside the controller, hiding it from reuse and cluttering the controller with code outside its scope. The
right way to implement this code is to put the pieces that know how to handle intermodel relationships
within the model, such as:

class User < ActiveRecord: :Base
def set_location(location)
Retire the old Visit object if necessary

63

Chapter 4: Getting the Most from M, V, and C

if self.current_visit
self.current_visit.end_date = Time.now
self.current_visit.save

end

self.current_visit = Visit.create(:location => location)
self.save
end

This implementation leaves your Controller short and sweet, and most important, ignorant as to the
specifics of how the model manages its relationships:

class UsersController < ApplicationController
def set_location_2
@location = Location.find(params[:id])
@me.set_location @location
redirect_to user_url (@Gme)
end
end

It also makes for code that is more portable. Placing this code in the model class makes your model

a portable resource for any other applications you write, whereas the controller is bound to only one
specific application. This model-bound code is also easier to test. Writing a unit test to determine whether
setting a user’s location works correctly is a lot easier if you have to deal with only the model objects and
can ignore the task of parsing request parameters. The controller, then, needs to be tested only for how
well it translates request parameters into operations on the model objects.

Keep this example in mind any time you find yourself chaining several model actions together within a
controller — it might be better to place that code within the model.

Use Exceptions to Make Code Cleaner

Developers have mixed feelings about exceptions for good reason: They’'re about as subtle an error-
handling method as bailing out of a fighter jet with an ejection seat. It is certainly true that exceptions
shouldn’t be used as a control technique in the normal flow of your application, but that also doesn’t
mean you need to avoid them like the plague. Model objects in a web application are an excellent place
to put exception handling to work for you because they are the piece of your application where most of
the “exceptional” error situations will probably occur:

Missing records

Unauthorized data access attempts

Lost or expired session (if your session is stored in a DB)

Authentication failure

Data validation

O 00000

General data failures

Because web applications are user facing, all these problems must be treated in two parts: First you need
to detect the problem and then your code must gracefully abort and present an error to the user. Trying

64

Chapter 4: Getting the Most from M, V, and C

to do all this in the controller can quickly become a quagmire of if ... else ... end blocks, such as the
following example of a reset_password method on a controller:

def reset_password
@verified = Verification.find(:first, :conditions => {
:typeof => 'PasswordReset',
:reference => params|[:id],
:activation_code => params|[:authcode]
}) rescue @verified=nil

unless (@verified.nil?)
@Quser = User.find(@verified.reference) rescue user=nil
unless (@Quser.nil?)

trysave = check_passwords (Guser,
params [:password],
params [:password_verifyl)

if (trysave)
@user.password = params|:password]

else
ad nauseam

Trying to handle every possible error in the controller creates a problem: The controller is now so filled
with nested blocks of code that what each action is supposed to do is no longer clear. This is exactly the
type of situation in which using the ejection seat can help. Try rewriting the preceding routing using
exceptions instead of nested blocks.

The first question to ask during this type of rewrite is whether the controller in this case is taking on too
much functionality; maybe some of this should be moved to a simple reset_password method on the
User model object. Doing so would place functionality related to the data model within the model itself
and leave the controller to simply attempt the execution and catch any errors that are thrown back.

Next, after this code has moved to the model, refine it further by removing the nested if ... else... end
blocks and replacing them with exception raising. If any of the situations that prevent the operation from
continuing occurs, the whole routine will bail out with an error message for the controller to catch. The

refactored controller method will look a lot simpler, even compared to the preceding partial function body:

def reset_password
begin

User.reset_password :id => params|[:id],
:code => params|:authcode],
:new_password => params|[:password],
:new_password_verify => params]|:password_verify]
rescue RuntimeError => error
flash|[:error] = error.message
redirect_to signin_url

end

end

65

Chapter 4: Getting the Most from M, V, and C

The code displays whatever message was thrown with the exception, so if you bailed out of the
reset_password function on the User model object with the line

raise 'User doesn't exist'

then that is the error message that will be displayed when the user is redirected back to the sign-in page.

The Flash Variable

Essential for streamlined error handling is a consistent method of transforming the errors into output for
your user. Rails provides a pattern for handling errors with a special hash table called flash that stores
status messages to add to general-purpose pages in your application. In a sense, it is like a logger except
that the messages go to the web user rather than a log file.

Three levels of £lash messages are usually used, though you can define as many as you want: info,
warning, and error. At the top of your application layouts, a conditional statement checks for the exis-
tence of these keys in the flash hash and, if they are found, it inserts some HTML into the layout that
causes an informational box to appear at the top of the layout, usually using the hashed value as the box’s
contents.

Using the flash variable in your layouts in this way is one of the reasons that exception-based error
handling is possible in web apps. As long as each exception has a descriptive message, a catch block can
simply store the exception’s message in the flash[:error] variable and redirect the user back to the
same page from which the bad request came.

Defining Your Own Exceptions

66

To use exceptions to clean up your code, you need to do it right. It isn’t good practice to go around raising
RuntimeError objects everywhere with only their message to distinguish them from each other. Get in
the practice of defining your own exception classes in an errors.rb file in the 1ib/ directory. Doing so
will give the errors you raise a bit more significance and allow the possibility of fine-grain error handling
from the exception-catching code.

Defining an exception class might look something like this:

module MyApp
class AppError < RuntimeError; end

User problems
class UserNotFoundError < AppError; end

class BadPasswordError < AppError; end

... etc
end

Then when you have a long method that might raise any number of exceptions, you can raise an error
class specific to the problem that occurred:

raise UserNotFoundError, "The specified user (#{user_id}) couldn't be found."

Chapter 4: Getting the Most from M, V, and C

and then respond appropriately to different types of errors in the code that is calling the method. The line
of code above looks redundant, but the redundancy serves a purpose: The custom exception class helps
your application understand what went wrong, and the associated message helps your user understand
what went wrong.

Mapping from Rows to Objects

ActiveRecord models are meant to wrap around database tables, but you are not limited to just reading
and writing each field as a basic data type. ActiveRecord allows you to map a table’s columns onto any
object you want as long as there are getter and setter methods to facilitate mapping the object to and from
the database data.

To map a table onto a complex object, use the composed_of macro within your model definition. This
macro works just like an association except that it associates a set of attributes on the model object with
a corresponding set of attributes on some object that you would like to use to represent those attributes.
When a model instance is loaded from the database, Rails will perform a lazy instantiation on that object
the first time it is referenced.

Here is an example that you might use in a part of your application that contains a map mash-up. Many
online mapping companies offer a service called geocoding, which is the process of transforming an
address into a set of coordinates. Geocoding is an essential step if you want to plot that address on a
map. Many mapping sites offer geocoding web services, but their terms of service do not allow you to
save the results of the geocoding for later reuse. Unfortunately, you are required to requery the geocoder
every time. (You get what you pay for.)

One way to automate this geocoding process is with a composed_of object association. For example, say
that you have a model object in which you store the street address of a place, but upon retrieving that
model object, you would like that street address to be dynamically mapped into a set of coordinates using
a geocoder. First, you define the association:

composed_of :geolocation,
:class_name => 'GeoLocation',
:mapping => [%w(name name),
%w(street street),
Sw(city city),
%w(state state),
w(zip zip)]

Then define the GeoLocation class that it references. You'll need to have an attr_accessor set for each
field in the address, and the initialization function will call the geocoding service to determine the latitude
and longitude.

class GeoLocation
attr_accessor :name, :address, :lat, :1lng
def initialize(name, street, city, state, zip)
@name, @address = name, "#{street}, #{city}, #{state} #{zip}"

perform_geocoding
end

67

Chapter 4: Getting the Most from M, V, and C

def distance_to(other_geoloc)
Magic function to compute the distance in
miles to another coordinate
42

end

def perform_geocoding
Secret investigation reveals Google's geocoder
always returns the number 42
@lat, @lng = 42, 42

end

end

The details of performing the actual geocoding are left to your particular implementation, but the
usefulness of doing it this way is clear: It allows you to map your database schema onto complex
objects outside ActiveRecord and provide extra functionality that doesn’t belong inside of your
model class.

Polymorphic Associations

68

The rigidity of database schemas can be limiting in many types of applications. The database sees the
world as a set of tables, columns, and keys, which doesn’t leave the developer much room to incorporate
semantics. What the user sees as a foreign key association, many databases simply see as a column of
integers. And even if this column of integers is specified as a foreign key in another table, that definition
globally restricts that column to references in one other table. A photo object might have a user_id field
to associate the photo with a particular user, but if you want to associate it with a place, too, then get
ready to add a place_id field.

You have two ways to work around this problem. The first is to create a join table for each type of object
that may be associated with the object in question. So you might have a UsersPhotos table to store
user-photo associations and a PlacesPhotos table to store place-photo associations. The second way is
to use a single association table that stores both the type and key of the associated object. This approach
results in a more scalable schema (as new association types are added) but requires some extra work at
query time:

SELECT p.*, u.name FROM photos p, users u, photos_users p_u
WHERE p.id = p_u.photo_id AND p_u.type = 'User' AND p_u.id = u.id;

Rails includes a handy implementation of this latter approach called polymorphic associations that hides
away any necessary query trickery and makes the database seem as though it speaks polymorphism
natively. To use polymorphic associations, you create an imaginary class that represents the ability to
participate in the polymorphic relationship. So the class rateable might be used to connect a Rating
table to reviewers, movies, and songs, or a commentable class might be used to associate the Comment
table with recipes, photos, and blog posts. Developers usually add the ~ able suffix to stand for “that
which can be ~ ,”” so the polymorphic type commentable stands for “that which can be commented
upon.”

Chapter 4: Getting the Most from M, V, and C

Creating a polymorphic association requires a few simple steps:

1. Pick a name for your polymorphic association, such as commentable.
2. Add fields to store the ID and type of the associated object on the table that stores the
foreign key.

class AddComments < ActiveRecord::Migration
def self.up
create_table :comments do |t]|
t.column :comment, :string
t.column :user_id, :integer

t.column :commentable_id, :integer
t.column :commentable_type, :string

end
end

3. Declare that the corresponding model object belongs_to the polymorphic type:

class Comment < ActiveRecord::Base
belongs_to :commentable, :polymorphic => true

end
4. Include the polymorphic association name on any associated objects:

class Recipe < ActiveRecord::Base
has_many :comments, :as => :commentable
end

class Photo

has_many :comments, :as => :commentable
end

class Post

has_many :comments, :as => :commentable

end

Now recipes, photos, and posts can all use the comments association as they normally would, despite
the fact that the Comment table is shared among them all. In addition, each Comment instance now has a
member commentable to which any model declaring the commentable association can be assigned.

Retrieving the recipients of comments is equally as easy. ActiveRecord handles fetching the data from
each commentable table referenced for you; no SQL is necessary on your part. Try the following command

69

Chapter 4: Getting the Most from M, V, and C

in the Rails console, for example, which generates an array of all objects that user #1 has commented on
and lists the class type of each ““commentable’ object:

ted$ script/console

Loading development environment.

>> me = User.find(1l).comments.collect { |comment|
2> comment .commentable.class.to_s

>> }

=> ["Post", "Recipe", "Photo", "Photo"]

Using polymorphic associations can simplify your model and eliminate the need for complicated queries
or duplicated tables. When you are designing your model, consider integrating them when you suspect
that the data in a table might apply to many other objects.

The World Outside of ActiveRecord

If you are a web application developer using Rails, you have nearly a 100 percent chance to be using
ActiveRecord and a relational database to manage your dynamic data. However, other frameworks under
active development suggest that this assumption might not be so true in the future. These frameworks are
deserving of large amounts of writing themselves, so only a mention to each is given here.

ActiveRDF (www.activerdf.org) is an ActiveRecord-like library for using data backed by an RDF data
store. Although most production systems today use relational databases, many research projects are
actively experimenting with the more flexible graph-based data format that RDF provides. Expect to see
ActiveRDF slowly gain momentum as graph-based storage moves out of the research labs and into the
mainstream.

ActiveResource is a resource-oriented alternative to ActiveRecord that allows your model objects to
map into RESTful resource endpoints on the web, not just to your database. The Rails team reports that
ActiveResource was developed primarily for internal resource consumption, rather than out on the Web,
though it will work for either. Several web applications from the same company, then, could all share

a single set of network-hosted resources and a single sign-on, for example. With RESTful XML data out
on the Web, ActiveResource will provide you a simple way to fetch and parse the data for use in your
application. If a company publishes a product catalog in a RESTful manner, for example, ActiveResource
will allow you to access its products from the model layer almost as if they were in a locally hosted
database.

The View

Designing the view in a Rails project is largely a task of skillful decomposition. Treating the intricacies
of aesthetic design and the details of HTML, CSS, and JavaScript as a black box, the designer’s principal
task is to determine which fundamental components make up the user interface and how to arrange and
compose those components so that they make sense to the user.

The Variable Problem

One of the not-so-wonderful side effects of the way in which Ruby on Rails organizes application compo-
nents is the lack of a formal contract between the view and the controller. That is to say, no place exists to

70

Chapter 4: Getting the Most from M, V, and C

enforce which variables are required by a particular view. When a controller renders a view, it isn’t call-
ing a function but rather parsing a file. It uses ERB, or any other Ruby parser you tell it, to parse through
your .rhtmnl files, extract the embedded Ruby within, and attempt to execute it.

So, your view might be a simple personalized Hello World application, as follows:

<hl>Hello, <%= @name %>!</hl>

This view will choke if the @name variable isn’t defined for it to use — a definition that occurs in the
controller:

def SayHelloController < ActiveController
def personalized
@name = "Grace"
end
end

Handling the view documents in this way is part of the reason that Rails can provide such a streamlined
development environment, but it also means that you must write your code on faith. Your controller has
no way to check what variables are required by an action, and the action has no way to know whether its
variables have been set — unless, of course, you follow a strict programming regimen.

First, be attentive when you are programming. In a world filled with Eclipse and Visual Studio devel-
opers, web programming is still a discipline that doesn’t allow the developer to rely on an Integrated
Development Environment (IDE), or even a compiler, to catch errors. You are responsible for knowing
what a view requires and for making sure that any action that renders it has prepared those require-
ments. The same goes for rendering partials (discussed later in this chapter, in “Partials as Atoms and
Molecules”).

Second, develop a strict convention for how and when you will check for erroneous data. You must
always follow this convention with no exceptions; otherwise, you won’t be able to depend on it. Although
you might come up with a few possible permutations, the following convention works particularly well,
and you will find that it integrates smoothly with API-based programming and allows for proper use of
HTTP response codes:

Q For any instance data required for a view to be coherent, validate the existence of the instance
data in the controller and assume its existence on faith in the view. If the instance data can-
not be loaded, either redirect to an error page or send an HTTP response code indicating the
error.

Q For any instance data that is optional, check for the existence of the data in the view and don’t
worry about it in the controller. The view should display both the instance data’s presence and
absence appropriately.

Following this pattern compensates for the lack of function signatures and compilation errors with a
convention that states which types of error handling go in which place. This convention places error
handling on the primary object of concern in the controller because errors in these objects are so severe
that an entirely different view should probably be rendered (for HTML users) or an HTTP error code
returned (for API users). Any other errors are caught in the view code and handled in a manner consistent
with the intent of that view.

71

Chapter 4: Getting the Most from M, V, and C

Rails-Style JavaScript

72

JavaScript is a strange beast that is hard to consistently characterize in the context of MVC. Is JavaScript
strictly a component of the view? Most Rails developers would say so, but that is because of the partic-
ular stance that the Ruby on Rails framework takes on the best way to use JavaScript. Developers with

experience in other frameworks might see JavaScript in a very different light.

To developers of in-page applications, JavaScript is where all the action takes place, and the remote
server acts, for the most part, like a remote storage service. The authors of Writely (acquired by Google
and turned into Google Docs) likely view JavaScript this way. Their online word processor is mostly a
single page whose source code contains model, view, and controller. The remote server is mostly just a
document persistence store.

The compile-to-web approach taken by the Google Web Toolkit (GWT) confounds any attempt to con-
sistently characterize JavaScript’s role further. When writing GWT code, model objects get compiled to
JavaScript so that real data, rather than just HTML, can be serialized and sent to the client browser. The
resulting application architecture between client and server can sometimes be like two parallel MVC
stacks communicating with each other.

One thing is certain: The web architecture is too flexible for a single, consistent decree of JavaScript’s role
in the web application to ever emerge. But diversity is good for our community. It keeps ideas flowing
and reminds us not to fall into a one-hammer-fits-all mindset. Chapter 7, ““The Five Styles of AJAX,”
presents a thorough design discussion comparing and contrasting the “’five schools of AJAX" — five
different ways that you can incorporate JavaScript and AJAX into your application (as on the Web, the
term “AJAX" is used loosely here). This section focuses on a few of the characteristics of Rails-style
JavaScript from the standpoint of your view implementation.

Although many views exist as to what type of code should be included in your JavaScript, the Ruby on
Rails community generally agrees on a consistent set of guidelines for use in Rails applications: JavaScript
is part of the view. Not just in the sense that it takes place in the web browser but also that some controller
actions choose to render pure-JavaScript responses back to the client. Thinking of JavaScript as the view
means that the primary role of JavaScript in your application is to animate the user interface and transfer
data between the client-hosted view and the server-hosted controller. Extensive use of JavaScript to
serialize and manage objects and to control application-wide decision making is not often done in Rails.
This capability makes for a few interesting characteristics of Rails applications:

0 JavaScript can be dynamic; it doesn’t need to live in . js files. If JavaScript is part of the view,
then a rendered view can be entirely JavaScript. Rendering a view as JavaScript makes sense
only in the context of an AJAX request, but is a very clever trick that allows a view to represent
the desired changes to existing content rather than serve as a replacement for the existing con-
tent. Rather than supply the client with a set of HTML objects for insertion into the page or XML
objects for processing, the controller action supplies the client with a piece of JavaScript that is
executed immediately on receipt.

This approach implies a particular breed of web applications that are a blend of client and server
interaction rather than a do-it-all client interface. The client asks the server for help when the
user performs an action, and the server responds either with HTML (which is added to the page)
or JavaScript (which is executed). For example, this snippet of code might add a new item to a
list, highlight something, or cause a page element to disappear.

0O AJAX-enabled Rails applications tend to transfer data often and in atomic bits. Relegating
the controller and model functions strictly to the server means that the client page is lost at sea

Chapter 4: Getting the Most from M, V, and C

without the server. It may contain links to certain features, but the implementation of these
features resides on the server, not in JavaScript. That means that the view code in a typical AJAX-
based Rails application will make several quick AJAX connections related to specific user actions
on the page where another framework might encourage a single, more sizable one, to accomplish
many tasks simultaneously.

Implementing all your model and controller functionality on the server may require a bit more round-trip
activity over the wire and will result in higher loads on your server, but the advantage is that it ensures
that the server is in sync with what the user experiences on the web page.

For example, when a user drags a photo into the lineup for a slideshow, the code that executes shouldn’t
be JavaScript adding this photo into the slideshow ordering. Instead, it should be code that contacts
the server to let it know that a new photo should be added. Let the server respond with any JavaScript
necessary to update the user’s web page to reflect this change.

This is just one of many ways to use JavaScript, but it’s a pattern that emerges in the development of
Rails views often enough to call out specifically. For a further discussion of JavaScript, AJAX, and web
applications, see Chapter 7.

Partials as Atoms and Molecules

One of the mantras repeated throughout the Rails community is “Don’t Repeat Yourself,” or DRY. The
idea is that a well-designed program should need to express each concept only once. The DRY mantra
isn’t just a plea for developers to be concise; it is a protection mechanism against code inconsistency. For
the same reason in-lined "“magic numbers”” are a bad idea in traditional coding, duplicated HTML code
introduces the risk of visual and logical inconsistencies in your web application.

A partial in Rails is a file that represents one atomic concept expressed in HTML, such as a blog comment
or a table row. A partial can contain other partials, as well as control structures such as loops, provided
that it represents one complete and reusable concept. In Rails, partials are stored alongside other view
code but their filenames are prefixed with an underscore, preventing them from being rendered as a
complete view by themselves.

In this way, partials are like static utility functions for the view. Each time you run across some HTML
component that seems to be an autonomous and repeatable concept, split it out as a partial so that it
can be referenced rather than in-lined. Referencing keeps files short and code updates quick. Elemental
partials and the composite partials that combine them are the atoms and molecules from which your
application can be constructed without any repetition, as shown in Figure 4-2.

Page Layout

Header An Action’s View
Partial)
Yield to Action Render Partial Parta
i Render Partial Partial
I~

Figure 4-2
73

Chapter 4: Getting the Most from M, V, and C

Here’s a look at the classic example of a partial: the form representing a user object. The form representa-
tion of an object is used in a minimum of two separate view pages, “new’” and "edit.”” Because this form
represents one complete concept, and you already know that it needs to be reused on multiple pages, a
partial is the best way to represent it.

Following Rails conventions, you can name the file view/user/_form.rhtml:

First: <%= text_field "user", "first", "size" => 20 %>

Last: <%= text_field "user", "last", "size" => 20 %>

Email: <%= text_field "user", "email", "size" => 35 %>

Password: <%= password_field "user", "password", "maxsize" => 15 %>

In case you're not familiar with Rails’ form helper, the text_field and password_field functions are
helper functions that output a form element and attempt to prefill the value field if available. So the line

First: <%= text_field "user", "first", "size" => 20 %>
would get translated to:

First <input type="text" id="user_ first" name="user[first]" size="20"
value="<%= @Quser.first %>" />

In this way, you can use the same form template for a situation that has no existing data (the "new”” view)
as well as a situation that does have existing data (the "edit”” view).

Splitting the user form out into a partial allows it to be maintained in one place but reused by reference
throughout the project. So the new.rhtml view that is provided when creating a new user might be the
following:

<hl>Create a User</hl>

<form action="/user/create" method="post">
<%= render :partial => 'user/form' %>
<input type="submit" value="Submit">
</form>

And the edit.rhtml view would be

<hl>Edits User "<%= @user.first %> <%= Quser.last %>"</hl>
<form action="/user/edit" method="post">

<%= render :partial => 'user/form' %>

<input type="submit" value="Submit">

</form>

Picking the Proper Partials

74

(Say that 10 times fast.)

Decomposition of your site into partials is a critical step in the Rails design philosophy, but where exactly
do you draw the line for what is a partial and what is not? The partials that are appropriate for your
application are in some respects unique every time, but certain themes tend to crop up time after time.

Chapter 4: Getting the Most from M, V, and C

What follows is a list of the partials that frequently occur in a typical database-driven web application;
consider it an a la carte list that you can choose from when planning your visual design.

The Full Profile

This partial contains everything there is to know about a particular object and is intended to be the largest
and most comprehensive partial for that object. This might be a user’s personal profile or the detailed view
of a blog post with all the comments below, or the full item detail on an online auction site. Even though

this type of partial is almost always rendered as a page by itself, it can still be useful to store it as a partial
so that it can be surrounded by a variety of smaller page elements, such as sidebars and ads.

The Form

Pulling the form fields for an object out into their own partial allows the same form to be used for both
creating and editing an object, requiring only one form representation of the object to be maintained (see
Figure 4-3). For any object that users can create themselves, this partial is essential.

Leave a Reply

Name [(required)

Mall {will not be published) (required)

Website

4
| Submit |
Figure 4-3
The Basic Search Form

This is the default form through which users submit search requests for this object type.

The Extended Search Form

If you have several ways by which you’d like to allow your users to search for objects, you should
split your search into a basic mode and an advanced mode to remove clutter for nonpower users. The
extended search form contains the entire set of search options that you are capable of supporting.

75

Chapter 4: Getting the Most from M, V, and C

The Row Summary

The row summary is useful when you want to concisely describe the item in a flat, wide space. Search
results are the most common uses of this partial type, but the rows of an e-mail inbox or the summaries
of a message board’s posts also fit the description. Usually this partial contains a link to the full view of
that object, and sometimes it contains several other actions that can be performed on it (delete, tag, send
to friend, send message, and so on, as shown in Figure 4-4).

Name: Ted Benson View Profile
MNetworks: Washington, DC
UVA Alum '05

Send Message
Poke Yourself!
View Friends

Figure 4-4

The Badge Summary

The badge summary is a partial used to advertise the larger full view of an object in a square or near-
square space (see Figure 4-5). Badges are useful as search results when graphics are an important part
of the summary; the thumbnails on a photo site such as Flickr are the badge summary partials for photo
objects. Badge summaries are also a good way to represent a vertically oriented list of items on a sidebar
to your main content, such as “Recently Added”” or “Most Popular” lists. Finally, this partial type is a
good candidate for embedding into other sites. The Facebook social networking site allows users to place
badge summaries of their Facebook profile on their personal pages, for example.

Summer Pico
de Gallo

by tedb

Figure 4-5

The Inline /Sparkline Reference

76

The inline reference partial, as illustrated in Figure 4-6, is a small partial intended to provide a fancy
replacement to inline hyperlink references to a particular object. Sometimes this partial will contain a
small set of controls that allow the user to operate on the object it references (sending a message to a user,
opening a document, defining a term, and so on).

Ruby on Rails (RoR 4 %)

Figure 4-6

Other times, the partial contains a sparkline, a term coined by Edward Tufte that references “data-intense,
design-simple, word-sized graphics.” Tufte is a Professor Emeritus at Yale University and a world-
renowned expert on information visualization and understanding. Used inline with text, sparkline

Chapter 4: Getting the Most from M, V, and C

partials display a short graphical representation of a piece of data, such as a miniature chart, a stock-ticker
style update, or a stoplight-style status indicator. The objective is to provide the user with unobtrusive
and immediately comprehensible graphics intermingled with text in situations in which graphics better
convey information than text. A green triangle pointing upward next to a number is much more concise
and easy to read than the phrase “rose 10 points,” especially when several such descriptions occur near
each other.

The View Isn’t Just HTML

This chapter addresses the view as it is normally written in HTML, but the view actually encompasses
any way the data can be rendered. The invoice from an online purchase might be available immediately
online, but it might also be e-mailed to you as a PDF, or shipped with your package as a printed letter.
All three of these items are alternative implementations of the same view. Chapter 5, “Beautiful Web
APIs,” focuses on the API-centric view of Rails-applications and discusses how to layer programmatic
access on top of your existing web site so that users can experience your site as XML, RDF, or even PDF
documents.

The Controller

It is appropriate to cover the controller last in this chapter because it is the glue that binds data from the
model with templates from the view. The controller is like the conductor in a symphony: Its role is to
manage and direct the fulfillment of a web request by directing elements from the model and view, not
by implementing any heavy-weight logic itself. Because the controller also represents endpoints that are
available to web users, the design of the controller also tells the story of your web application — what it
is intended to do and what features are important.

The controller answers web requests with the combination of an action plus “filter chains’” attached to
that action. The action performs the actual operations required to fulfill the request, whereas the filter
chains perform operations intended to sculpt the way the web application behaves as a whole. Figure 4-7
illustrates this flow. Later in this section, you'll see how to implement the three types of filters (before,
after, and around filters) and what types of code to place in them.

Before Filters After Filter

Request >Ac"°" Response

Around Filter

Figure 4-7

Actions perform operations on model objects, set up any variables required by the view, and then render
a view, as shown in Figure 4-8.

The views are depicted inside the action in the diagram in Figure 4-8 to emphasize that every controller

action inevitably results in the rendering of some response to the user, whether it is just an HTTP code,
an XML document, or a full-blown HTML page. The rendering of this response is the last step that your

77

Chapter 4: Getting the Most from M, V, and C

P> Action
O OO}

Make necessary Load necessary data Choose a
changes to model from to model view

| l

A\ \J

Y

Model Model
Figure 4-8

action will usually take. It is the point of no return: After you've chosen a view to render, you can’t take
it back. You can also use the render call only once per run through the system, so thinking of the view as
the portal through which the application exits makes sense.

This pattern of operations in a controller action looks something like this:

class PhotoController

def show
@photo = Photo.find(params[:id]) # Set up variable required by the view
render :view => 'show' # (this could be left as an implied call)
end
end

Variations will make the code a bit more complicated, of course (see the section “’Dealing with Two-Step
Actions,” later in this chapter). Dealing with multiple response types will also require more code, though
not very much. The basic pattern and simplicity of the action controller remains the same:

class PhotoController

def show
@photo = Photo.find(params[:id]) # Set up variable required by the view
respond_to do |:type] # Render the view in requested format
type.html {} # fall through to RHTML
type.xml { render :xml => @photo.to_xml }
type.rdf { render :rdf => @photo.to_rdf } # requires acts_as_rdf plugin
type.js { render :partial => 'photo', :locals => {:photo => @photo }
end
end
end

With well-designed controllers, the actions can remain at a level of simplicity similar to the preceding
ones. The following tips will help you achieve that simplicity by showing you how to structure your
controller and distribute work concisely.

Reusable CRUD

Essentially, most web applications are actually just front ends to a domain-specific set of database tables.
They are not usually concerned with creating a home-movie DVD or touching up a photograph. Though

78

Chapter 4: Getting the Most from M, V, and C

web-based multimedia applications are becoming more of a possibility every day, bandwidth and the
web browser’s virtual machine are still too limited to handle those sorts of tasks today. Even within the
realm of media editing, we web developers are mainly in the information organization business.

You have probably heard about the CRUD pattern. CRUD stands for “’Create, Read, Update, Delete’”” and
represents the fundamental tasks in any web application, with the primary function being to organize
information, for sites ranging from Flickr to Facebook to Gmail. Recognizing the CRUD pattern is only
part of the game; knowing how to implement it properly is the other part.

The CRUD pattern works for any controller whose purpose is to represent a resource in your site. A
resource is like a model object exposed for the user. Whereas a model object is a server-side abstraction
backed by your database, a resource is an Internet-facing abstraction backed by a resource-centric con-
troller on your application. Many times, resources align perfectly with model objects in your system,
such as a Photo object in a photo album application or a Message object in a social networking site. They
don’t need to map, though — a resource might be an abstraction layered on top of several model objects
working in concert. (Chapter 6 goes into much more detail on the topic.)

The hypothetical Recipe controller in the last chapter is a resource-centric controller with a few extra
actions tagged onto it. That’s okay, too; as long as the controller still fulfills all the CRUD operations for
the resource, you can add as many extra verbs as you want.

Rails Scaffolding Is a Bunch of CRUD

Rails provides a great way to get started with CRUD called the scaffold generator. When Rails was
first released, one of the common complaints was that the scaffolding method of development was an
unrealistic and blunt tool for the intricacies of real-world web development. What these criticisms missed
was that scaffolding isn’t supposed to be a final artifact in your application. Instead, it is a useful design
template to build out a bunch of the CRUD operations automatically.

script/generate scaffold <resource_name>

The following table shows slightly modified versions of the functions set up by the scaffold generator
for a User resource.

Create

Function Purpose Function Body

New Displays the form for a new @user = User.new
User object

create Accepts request data and @user = User.new(params|:user])
attempts to create a new User if @user.save
object flash[:notice] =

'User was successfully created.'
redirect_to user_url (@Quser)

else
render :action => "new"

end

Continued

79

Chapter 4: Getting the Most from M, V, and C

Read
Function Purpose Function Body
index Displays a list of all User @users = User.find(:all)
objects
Show Shows one User object @user = User.find(params[:id])
Update
Function Purpose Function Body
Edit Displays the form for @user = User.find(params[:1id])
updating a User object,
prepopulating it with data
from the User object
corresponding to the
supplied User ID
update Uses data in the request to @user = User.find(params[:id])
attempt to update a User if @Quser.update_attributes(
object params [:user])
flash[:notice] =
'User was successfully updated.'
redirect_to user_url (Quser)
else
render :action => "edit"
end
Delete
Function Purpose Function Body
destroy Removes the User object @user = User.find(params[:id])
corresponding to the given ID Quser.destroy
redirect_to users_url

Dealing with Two-Step Actions

80

Notice how the scaffold generator divides new resource creation into two actions, new and create. Any
component of a web application that accepts user input is really two components: one to display the
form and another to process the form data. This is one of two possible strategies to guide the way you
implement actions that contain both form display and form processing components. Both strategies come
with different benefits, so it is good to know both and make a conscious decision as to which to apply in
your coding. The two alternatives are as follows:

1. Keeping forms and form processing together

2. Keeping object mutation and object display separate

Chapter 4: Getting the Most from M, V, and C

It should be noted that the RESTful routes addition to Rails (described in
Chapter 6) effectively sets the Rails standard on this issue as the second of these two
options. It provides a mechanism through the Rails router by which the same URL
endpoint can map to different controller actions depending on the HTTP verb. Because
mapping multiple HTTP verbs to the same action is the reason that you would want
to combine form display and form processing into the same action, the RESTful route
addition to Rails makes this combination of tasks unnecessary inside the same method.
Despite alternative 2’s being the preferred implementation choice, both are presented
here so that you can choose for yourself.

Keeping Forms and Their Processing Together

The first approach to two-step action design is to tie both the form and the form processing to the same
action. This approach works well with web applications designed around the GET/POST paradigm
because it minimizes the number of URL endpoints into the application and results in actions that com-
pletely address a single concept.

Rails provides an easy way to achieve this two-step design with the request object available to any
controller.

def controller_action
if request.post?
Process post data
else
Display form
end
end

The request object contains methods for each of the primary HTTP commands (get?, put?, post?, and
delete?) that return regardless of whether the HTTP request was performed with that command. For
applications using the GET/POST paradigm, a complete form interaction consists of a GET to display the
form and a POST to process the form. So the create action on the Account controller in the example
cooking site from the previous chapter might be as follows:

In the Account Controller
Note: This implementation is without error handling
def create
Decide whether to display the form or process it
if request.post?

@user = User.create(params]|:user])
redirect_to :action => show, :id => @user.id

else
Renders the form app/views/account/create.rhtml by default

end
end

81

Chapter 4: Getting the Most from M, V, and C

This action attempts to create a new User object if the request method was POST; it displays the default
RHTML view for all other cases.

In practice, a web application must sanitize and validate its input. Although the details of performing
these tasks are usually stored inside the model, the controller is responsible for catching any valida-
tion errors that the model throws and re-rendering the form with the errors displayed. Here is how the
complete action might look, accounting for the possibility of erroneous input:

In the Account Controller

def create
Decide whether to display the form or process it
if request.post?

if User.create(params]|:user])
redirect_to :action => show, :id => @user.id

else
Renders the form app/views/account/create.rhtml by default
end
else
Renders the form app/views/account/create.rhtml by default
end

end

And here is an equivalent rewrite of that action without all the if ... else ... end blocks:

def create
if request.post? && User.create(params|:user])

redirect_to :action => show, :id => Quser.id

end
Renders the form /app/views/account/create.rhtml by default
end

Keeping Object Mutation and Object Display Separate

If the “keep it together”” strategy is aimed at bringing all the processing related to one user CRUD oper-
ation into the same method implementation, then the “keep ‘em apart”” method keeps actions simple
by allowing them to perform only a single, basic function. In this strategy, an action can either display
data or change data, but not both (though the one that changes data might end up rendering the one that
displays data). To reiterate, this is the preferred strategy for using the newer RESTful routing capabilities
of Rails.

This approach has a number of benefits:
O It keeps the implementation of each action simple, and when you begin to implement multiple

response formats in your actions, you'll appreciate that simplicity.

Q Itclearly delineates those areas of the controller that change your model data from those that do
not.

Q The Rails router prefers this style of CRUD, so you will benefit from its implicit default assump-
tions without having to override them. This doesn’t mean that this strategy is more correct,
but it does mean that your Rails code will be a bit more concise.

82

Chapter 4: Getting the Most from M, V, and C

Using this approach, a data-modifying operation such as the edit action will be split into two separate
components: edit and update. The edit action would simply load the resource being edited and render
the edit.rhtml view, which populates a form using the data on the loaded resource, as follows:

def edit
@Quser = User.find(params[:id])
end

The update action actually processes the result of this form. If the update succeeds, it redirects the user
to show action for that resource so that the user can see the results of the update. If the update fails,
the update action uses the render command on the edit action, which has the effect of loading the
edit.rhtml page with the preparations done by the update method, so the resource data used to pre-
populate the form reflects the user’s own edits, and any error information generated by the attempted
update is passed to the form for display as well.

Critical to the success of this type of approach is Rails” flash variable. Because the flash variable is per-
sisted to the user’s session, it can be used to store messages that remain across an extra page load or
redirect. When the update command succeeds and redirects to the show action, this redirect is performed
via HTTP, so it results in a completely new request. Normally, this means that the show action has no idea
that you've just updated the data for the record, but you’d like to notify the user that his or her update
was, in fact, a success. The flash variable allows you to do this by stashing that message in the user’s
session and conditionally displaying the notification when it is present at the top of your application
layout.

Also critical to this type of development is the notion that your forms are intelligent: They know how
to prepopulate themselves with available data, and they look for a list of form errors and display those
if available. This allows the same form to be used for new user creation, user editing, and also error
kickbacks. Creation is the pristine step: Neither prepopulated data nor errors normally exist, and the
form will be empty. During an edit or an error kickback, there will be data that does already exist, and
the form should be able to fill its fields as much as possible so that the user can see what is already there.
During error kickbacks for new user creation or edit operations, the form also needs to highlight errors
that occurred. Using intelligent forms (which Rails helps you do with its libraries), the create action is
able to simply re-render the new action when an error occurs. The form rendered by the new action will
detect both that there are errors and that there already exists some prefilled user data, and it will make
adjustments to its display accordingly.

Knowing When to Outsource

A well-designed controller should be suspiciously simple. Key to designing your controllers for simplic-
ity is knowing what types of tasks should go where. Many times, the controller code needed to perform
the requested action is very small. You've just seen that the show action created by the scaffold generator
is only one line, for instance:

@photo = Photo.find(params[:id])
This one line is only part of the actions that need to occur in a real application. The input parameter must
be checked for errors and potential hacking attempts; authorization must be done to make sure that the

logged-in user can access both the show action and the photo being requested; and any number of other
conditions or requirements may be taken into account. You can outsource all these tasks to other places

83

Chapter 4: Getting the Most from M, V, and C

in your application to keep the code in each action simple. This type of outsourcing generally goes to two
places: to the ApplicationController (with filters) and to model objects.

Pulling Out the Housekeeping with Filters

84

Sometimes this extra code needed to support an action is a cross-cutting concern throughout the appli-
cation. It is necessary but not specific to any one action. These types of housekeeping tasks are best
implemented on the ApplicationController, which serves as a base class for all other controllers, and
applied to actions that need them with the help of filters.

Filters are a way to chain bits of shared code before and after actions, as Figure 4-7 illustrated. Filters
have access to the request and response objects and can also access the instance data on the controller,
so they have the ability to examine and modify the entire run of the controller action. They also return a
Boolean value that can be used to stop the action from being executed by returning false.

Here are five example scenarios in which filters might be used:

0 Members-only areas: Many actions, and often entire controllers, need to enforce that a user has
already logged in and initiated a session before providing access to the actions’ functionality.
This enforcement exists as much for business reasons (making sure that the user paid a subscrip-
tion cost, for instance) as for technical ones (the controller’s operation depends on user-specific
data).

0 Security: If you've ever logged on to a banking web site and left the session idle for more than
a few minutes, you've seen that the next click you make redirects you back to the login screen.
This redirection is accomplished by the timing of the duration between requests. If this duration
exceeds some defined threshold, the session can be canceled before the new request is routed to a
controller action.

O Utility: Many sites, such as the hypothetical cooking site in the previous chapter, display user-
specific information on nearly every page. If you prefer to load this information from the
database each time, every controller’s action will need to begin with some line such as
@me = User. find (session[:uid]). This can be abstracted away so that it always occurs, and
it also provides a single location to make changes to the method with which this user data is
loaded.

Q Skinning: If your application supports user-selectable skins that are too complicated to be
accomplished with layouts alone, you can load the user’s skin preference into a session variable
and then use a before_filter to look for that session variable and perform the work necessary
to make sure that any responses generated are using that skin.

QO Compression: Perhaps you are developing for mobile applications and are particularly
sensitive to page size. Place an after_filter on your controllers that compresses their
output.

Recall that there are three types of filters — before, after, and around — and they behave just as you'd
expect them to given their names. Before filters execute before the action is fired; after filters execute
after the action has fired (but before a response is sent to the user); and around filters wrap around the
action. Each type of filter is implemented as a method on your controller, or a parent controller that your
controller extends. The “filter”” is the association between one of these functions and the filter chain on a
particular controller/action combination.

Chapter 4: Getting the Most from M, V, and C

Filters have access to the variables involved in the request processing, which means they can perform
operations such as encryption, compression, or error checking on incoming or outgoing data. They can
also affect the flow of the request processing. If a before filter performs a redirect, for example, the action
that was otherwise going to be executed will no longer be.

Here is an example function that you might place in the ApplicationController to redirect to the “sign
in” URL if a user ID session variable does not exist:

class ApplicationController < ActionController: :Base
def require_login
unless session|:user]
session|:requested_uri] = request.env["REQUEST URI"]
redirect_to signin_url
end
end
end

And here is how you might apply that filter to every action in the controller. The before_filter macro
will take the symbol passed into it and call a method by that name on the controller.

class GoalsController < ApplicationController
before_filter :require_login

... Implementation here
end

Filters have a whole range of uses and can help seriously clean up your controller code. Whenever you
are implementing something within a controller action that feels more like an application-wide issue,
it probably is. Consider extracting it to the ApplicationController and applying it to the actions you
need with filters. For an excellent walk-through of the mechanics of implementing a filter, view the
documentation page online at http://api.rubyonrails.org/classes/ActionController/Filters
/ClassMethods.html.

Pulling Out Data-Related Operations with Model Objects

User input-related tasks use up the most real estate in poorly designed controllers. More often than not,
any page that takes a form input is going to load it into some model object for storage in your database.
The transfer of form data to an object and eventually a SQL query requires several steps: fetching each
field out of the request parameters; sanitizing the data to prevent against SQL injection and other attacks;
and validating the data. (A SQL injection attack occurs when a malicious user crafts form input with the
intention of breaking a SQL query containing that input and injecting some other database operation in
its place.) Outsourcing these steps to the model not only places data operations in their proper place but
allows you to take advantage of some features Rails offers to speed the process.

Loading Data from Parameters

Ruby on Rails provides a way to automate the extraction of form variables that can change the task of
loading a new user object with data from many lines down to one. In the convention-over-configuration
style, Rails does this by using a style of form design that differs a bit from the norm, taking advantage of
the fact that field names can contain nonalphanumeric characters.

85

Chapter 4: Getting the Most from M, V, and C

When parsing form data into the params hash table available within a controller, Rails interprets field
names with brackets as entries into a hash table, so although the field named phone is treated as a nor-
mal variable, accessed via params|[:phone], the field named user [phone] is interpreted as an entry
into a hash table named user with the key phone, and this can be accessed within your controller via
params[:user] [:phone].

ActiveRecord objects all contain methods to create a new object or to modify an existing object using a
hash table of field names to field values. Using this feature with Rails’ interpretation of form field names,
it is possible to load data from the following form:

<input type="text" name="user[first_name]" />

<input type="text" name="user[last_name]" />

<input type="text" name="user[email_address]" />
<input type="text" name="user [phone_number]" />
<input type="text" name="user |[pizzas_eaten_today]" />

with a single call to ActiveRecord:

@user = User.new(params|:user])

ActiveRecord sees that params|[:user] is a hash table and matches its keys against the fields available on
the User object.

The Rails convention, as seen from this example, is to always name field names as keys into a hash
identified by the type of object the field refers to. It doesn’t complicate access to the raw data, but it allows
you to avoid having to fill your code with statements transferring data from the request parameters to a
model object.

What if your user has malicious intentions and custom crafts a form post to include extra variables such
as user[is_admin] = 1? The Rails library makes an extension to Ruby’s Hash class that provides help
in these cases. The Hash: : slice method allows you to filter a hash table with a whitelist of keys (the
corresponding except method defined by rails allows blacklist filtering). If you want to ensure that only
certain fields are being passed through by your user, use the slice method to prescreen the hash-table
before you pass it into ActiveRecord methods, as follows:

@Quser = User.new(params|[:user].slice(:first, :last, :email, :bio))

Security
Security should never be an afterthought in programming, but it often is. All data inputs from a remote
user should be treated as a risk in a web application and must be sanitized to minimize the risk of attacks,
both intentional and unintentional.
A common attack in the web world is the SQL injection attack, in which the attacker submits a piece of
form data with the knowledge that the form data is going to be inserted into a SQL statement. The intent
is to rewrite the SQL statement so that a statement such as the following:

SELECT * FROM Users WHERE handle='ted' AND password='pancakes';

is turned into a statement like this one:

86

Chapter 4: Getting the Most from M, V, and C

SELECT * FROM Users WHERE handle=''; DROP TABLE Users; --' AND password='pancakes';

By supplying the username ' ; DROP TABLE Users; -- with the knowledge that it would be placed unmod-
ified into a SQL query, the attacker can comment out the second half of the original query and sneak in a
command to delete the entire Users table.

Defending against this type of attack is important, but, fortunately, Rails does it for you in certain cases.
It is essential, therefore, to know when you can count on Rails to be your guard and when you must
perform data sanitization yourself. In general, avoid passing WHERE clauses that you’ve preconstructed
unless you absolutely must. If you use a prewritten WHERE clause, you'll need to take care of data sanitiz-
ing manually in your controller.

If you let Rails construct the WHERE clause for you by using its built-in variable binding, ActiveRecord
will take care of preventing injection attacks for you, and you can save yourself the controller code:

Article.find(:all,
[
"author_id = ? AND topic = 2",
params [:author_id],
params|[:topic]

1)

Validations

Data validations are the final area of data handling that should never appear in the controller. ActiveRe-
cord contains a powerful validation module that allows you to concisely describe restraints to place on
each field during object creation, save, and update. This code not only binds to these operations and runs
automatically but also, in the event of error, prepares a nice error hash that can be turned into an HTML
display for the user to see. If you ever find yourself validating data in the controller, don’t. Move it into
the model instead.

Knowing When to Refactor

A good application design contains a collection of controllers that is simple, but what if that design is
too simple? Often, a particular organization might make sense while you're drawing it on the back of a
napkin, but when you begin to implement it, you realize that you have bitten off more than you’d care to
chew with one controller. If a controller has grown too fat, it is time to refactor.

Overgrown “‘super-controllers” are a common cause for refactoring in Rails applications. These types of
controllers arise when a diverse group of functionalities has been brought together into one controller.
You know when you’ve run into one of these beasts because you experience its telltale symptoms: You
find yourself spending too much time hitting the Page Up and Page Down keys searching for actions
inside the controller, and you can no longer easily describe the role of the controller in one sentence.

Many variables are at play in the decision to refactor code: how big the project is; how many developers it
has; whether it is commercial; whether it is in production; and so on. Ultimately, though, the decision to
refactor is simple and is governed by your informed opinion as a developer rather than by some universal
law. If the design of your code is beginning to get in your way so much that refactoring it, despite the
time and effort involved, would seem justified by the morale and efficiency improvements of a better
design, then go for it.

87

Chapter 4: Getting the Most from M, V, and C

A good strategy for controller refactoring is to identify the non-CRUD actions on a controller and
ask yourself whether any of them might belong on a controller of their own. Consider the example
RecipeController from the previous chapter. That controller contained functions such as comment
and rate to let users perform those actions on a recipe. These types of non-CRUD actions are fine to
have on a controller, but they should also be your first candidates for refactoring. Refactoring toward a
RESTful design (see Chapter 6) is often an effective way to transform oversized controllers into logical
resource-centric ones.

In the Recipe example of the previous chapter, you might choose to leave the rate method on

the RecipeController but to split off the comment action into an entirely new controller, the
CommentController. For now, this controller will implement only two methods: new and create, but
a space has been created to add more functionality if necessary, and the Recipe controller has been
decluttered a bit.

Summary

88

This chapter contained many tips for MVC and design-related issues that frequently occur in Rails
projects but can’t be solved with the Rails API alone. Nearly all these issues relate in some way to choices
you must make about the way you decompose and organize your code. Paying good attention to code
organization up front is a small bit of effort that leads to big, long-term improvements in a Rails project.
Placing code in the right place maximizes the amount of ““for free”” automation that Rails can provide as
well as prevents you from having to repeat yourself throughout the files of your project.

The next chapter examines Rails application design from the standpoint of an API developer. It discusses
both general strategies of interest to API developers on the Web and the Rails-specific patterns that allow
you to overlay an API directly on top of the HTML version of your site, essentially getting two access
methods for the development cost of one.

Beautiful Web APIs

W. Web stepped off the bus and forced a nervous swallow as he entered the crowd of noise and signs. He
had arrived as close to the heart of Application Square as the bus could get, which was about two blocks
away. As far as he could see, URIs and other regulars of their crowd were holding signs and milling
about.

It was not unlike a football game, Web thought, remembering videos of tailgating parties that had been
uploaded to him before. He waded through the URIs trying to get closer to the square.

The URIs were tall, French fry-like creatures with short, stubby legs and tyrannosaurus-like arms. For
some reason, they all talked as though they were from the Bronx, even the Unicode ones. As groups of
them chanted their slogans, their nasal voices occasionally cracked at the exciting parts.

No wonder these guys get pushed around, Web thought.

The real geeks were the ones who hadn’t even bothered to register domain names for themselves. IP
addresses blazoned on their chests. They were a bit pastier than the others and wore thick glasses.

““Hey, watch it! Geez, buddy, can’t we even get some respect at our own protest?”

Web had been searching for the stage so intensely that he had inadvertently walked straight into one of
them.

“Oh! I'm sorry ... uh, 208.97.177.118,” Web said, tilting his head sideways to read the IP address
written on its chest. “’I was just looking for the main stage. Do know if there is one?”’

“What am I, DNS? That resource is 301 Moved Permanently! Aheiahahiaha!” the URI snorted in reply.
Web stood there, unsure of what to say.

“Hey, loosen up, buddy.” The URI punched him in the shoulder. “It’s a beautiful day. The stage is over
that way,”” he gestured with his fry-like head.

“Thanks, I appreciate it. Say, what exactly are you protesting?”

Chapter 5: Beautiful Web APIs

20

“You mean nobody gave you a pamphlet?”’ the creature exclaimed. “Those dynamic URIs. You can
never count on them to be there when you need 'em. We're protesting the 'stablishment, 'cause we get no
respect and it’s time we deserve some.”

“What do you mean?”” Web said. *’Everyone uses you guys. You're great — you should see how large
my browser’s bookmark folder is! In fact, just the other day ... "’

“Use us and throw us away; use us and throw us away. That’s the way it always happens. Throw-away
labels, that’s what we are. Nobody stops to think that we’ve got depth to us. Do you think we like being
three-hundred characters long? ‘Oh, doesn’t matter,” you say. ‘Nobody ever stopped to appreciate the
beauty of just a mere URI!" Just a mere URI?!”

The URI didn't give Web a chance to respond.

“And social services — we deserve them, too. Do you know how much funding unit tests got last year?
Ower 1.2 billion. Billion! Ya know how much we got? A big zero. Zilch. Nothin’. How is it that we’re
the face of the Internet and nobody’s ever stopped to think that we need attention, too?”’

Web could see that this was the beginning of a long rant this URI had given many times before, and he
knew he had to get to the stage before the protest ended.

“I couldn’t agree more. We need more funding devoted to URIs,” he said hurriedly. “Look, I'm sorry to
run, but I've really got to get to that stage. Thanks for your help!”

And before the URI could say anything more, Web had pushed back into the crowd, weaving his way
forward toward the edge of the square.

The exciting thing about a good design is that the more you dive into it, the more you appreciate it. In
this chapter, you'll see how a good MVC-grounded application design begins to pay serious dividends
as you expand your web application past Version 1. This chapter explores the design, implementation,
and metering of Web APIs with Rails.

Offering an API to your web application is becoming increasingly important for success. It gives users
better control over the data that your site provides and opens the door for creative reuse of your data.
Although you might not benefit directly from ad clicks on pages reusing your services and data, you
will benefit from the publicity that popular API users will generate for you and can strike for-fee usage
agreements with heavy users.

Web APIs also promote a vision of the Web in which sites are able to specialize their focus and work
together to more efficiently achieve programming goals. Few web developers today would implement
their own in-page map widget. Instead, they would just use one of the excellent Map APIs offered by
Google, Yahoo!, and Microsoft. Reusable parts and the ability to specialize are key factors that accompany
the advancement of any area of technology. Using and developing APIs on the Web enables increased
quality and sophistication of web applications for all users.

Web Service can be a confusing term because the phrase represents both a general category of software
development and a specific set of standards. It is as though you created a company to produce and
market your amazing new granola bar but named this bar “Food.” Now you’ve complicated everyone’s
ability to communicate clearly; every article about food must now begin with a clarification of which
food it is talking about (food or Food) and a reminder of what the differences are. To settle this problem
here, I use the term Web API.

Chapter 5: Beautiful Web APIs

This chapter is about Web APIs and Ruby on Rails. It explores the Rails-style API and demonstrates how
to successfully integrate one into your application. Except for a small segment about ActionWebService at
the end of the chapter, this chapter is not talking about SOAP or XML-RPC but rather a new style of API
design popularized by the Rails framework. This style encourages you to consider web site design and
service API design as two faces of the same effort rather than as two separate and distinct components of
your web application.

Two Big lIdeas for Web APIs

This chapter focuses on two big ideas that completely change the way Web APIs are designed and cre-
ated. The first is a new role for the URL as the face of your API. Whereas at one time, URLs pointed to
files in a remote filesystem, the modern concept of request routing allows today’s URLs to instead point
to virtual capabilities within your web application. When you begin to organize URLs around the vir-
tual capabilities of your site rather than around the physical files that implement those capabilities, your
URLSs become a lot easier to read and much more fun to work with.

The second big idea presented by this chapter is the notion of the API as simply an alternative response
format for the actions on your existing web application. If URLs address functionality rather than files, the
same URL can be used to provide HTML, XML, RDF, or even PDF versions of that piece of functionality.
Which one to choose is determined by fields in the HTTP header or a format extension on the URL, such
as .html or .xml. This is a completely new take on the idea of APIs, one in which the API and the web
site are the same entity, sharing the same code, and differing only in the way they choose to render their
results. This style of development leads to less code and cleaner code because it eliminates the need for
you to repeat yourself across multiple service implementations.

The New URL: Addressing Concepts, Not Files

If you have ever used Flickr, you might have noticed how well designed its URLs are. For example,

http://flickr.com/photos/icygracy

Anyone with even a cursory familiarity of Flickr can glance at this URL and make a good guess about
what will be on the page it describes. You can even remember this URL instead of bookmarking it,
because it is a locator in an address space defined by intention rather than by quirks of software: “Photos
from the user icygracy.”

URLs haven’t always been this pretty — which, in my opinion, was one of the many factors slowing
the spread of Web APIs in the past. Until recently, web applications treated URLs as by-products of the
development process rather than critical elements of the design process. More specifically:

1. The URL was seen as an address into the code that the web developer wrote rather than
as an identifier for a particular concept in the application. URLs thus represented verbs:
/viewBook.php, for example. Which book was to be viewed would be passed in as an argu-
ment. This style of URL crafting meant that an application’s endpoints were seen as
functions; by themselves, they had no meaning related to the use and became meaningful
only when applied to a set of parameters.

921

Chapter 5: Beautiful Web APIs

92

2. Asonly means to an end, URLs weren’t engineered. They just arose organically as a property
of how the code was structured and organized on the server.

3. URLs were mapped one-to-one with files on the server, whether these files were static con-
tent of dynamic scripts.

So, describing URLs as “‘pretty”” is both a reference to how simple it looks on the surface and what it
means intuitively underneath.

As an archaeological artifact demonstrating these three points, look at a link to Dr. Seuss merchandise
from Amazon.com’s home page on March 2, 2000, courtesy of the Internet Archive:

http://sl.amazon.com/exec/varzea/search-handle-url/ref=gw_m_col_7/?index=fixed-
price%26rank=-price%26field-status=open%26field-browse=68457%26field-
titledesc%3DDr.%20Seuss

Yuck! No wonder the evolution of service development focused on an approach that encouraged services
to be written as stand-alone pieces of code separate from their web counterparts. Wouldn’t it have been
much nicer to address the concept of Dr. Seuss books as something more like the following?

http://amazon.com/authors/dr_seuss/books

This example is a bit unfair. The March 2 URL appears to contain several clarifying parameters provid-
ing instructions for how to order the results and which items to show, but the basic critique remains
the same. Modern web developers are finding it much more aesthetic and useful to craft URLs that
address high-level concepts rather than the functions that make display of those concepts possible. The path
/authors/dr_seuss/books is clearly a path that addresses a concept and is meaningful both to users and
developers. The path /exec/varzea/search-handle-url is clearly a path that addresses a piece of code
and carries little meaning outside the development team that wrote it.

This new way of thinking about URLs has cleaned things up significantly. It is a complete departure
from the URL-as-filesystem-object line of thinking. Rather than refer to an object that can be found in
the filesystem, the URL refers to a particular concept that the application is capable of displaying. (This
requires a translation step called “routing” that is discussed in detail below.) Point for point, here is how
this new outlook compares to the old one:

1. The URL is seen as an address into the concept-space of an application rather than as an
address into the code of an application. This URL may represent both nouns (resources
managed by your application) and verbs (actions on those resources). URLs are meaningful
entities without any parameters, but parameters may be used to clarify and add additional
parameters to the request.

2. The URLs that map into the application’s concept-space are highly engineered, the same way
that object interfaces are in languages such as C++ or Java. The structure of URLs should
follow deliberate patterns that are easy to read and understand. These patterns are written
down and enforced as part of the web application.

3. Disregarding static content, there is no set connection between URLs and files on the web
server. The URL addresses locations in concept-space, in the file system. A step called “rout-
ing”” occurs when a web request is received that takes this conceptual address and decides
what piece of application code to use to answer the request.

Chapter 5: Beautiful Web APIs

The big trick isn’t that files necessarily needed to be organized differently (after all, there is no direc-
tory path on Flickr’s hard drive called photos/icygracy/). Rather, a new layer of abstraction has been
added on top of your web application and is being used as the addressable space. Previously, URLs
operated at the layer of abstraction provided by your physical file system — files and directories — but
now they operate within a hierarchically arranged set of concepts that you choose. Although your
application code and structure is meaningful to you as the developer, it has no meaning to your users.
This new layer of abstraction means that your URLs can be “pretty”” and meaningful to your users

as well.

This idea is not unique to Ruby on Rails. Many web servers such as Tomcat allow developers to cre-
ate multiple contexts and handlers that can interpret the URL quite flexibly. But whereas they require
hundreds of lines of XML to be configured, Rails requires only one or two with a new way of handling
URLSs called routing. And in the typical Rails fashion, routing is not optional but rather is the required
mechanism by which all web requests are fulfilled. Because Rails makes routing both required and easy,
development of simple, intuitive URLs can realistically become an important part of your web applica-
tion’s design process.

The Application Is the API

The second big idea is that your application is the Web API, and it always was. Every time a page in your
site loads, that page is the response to an API request. The fact that a web page is rendered in HTML

is just because of the response type of that API request. The information represented by that web page
could just have well been represented in a text file, XML, RDF, or any other format you choose.

If you follow the first big idea — that URLSs should represent concepts rather than files — you have
already achieved the first big hurdle in making your web site and your Web API one and the same. By
crafting your web pages around a set of concept-based URIs, you have already defined the “interface”
for the API, the set of concepts that your web site makes available to its users. Now you just have to
implement a back-end that is able to respond to non-HTML requests at those same URL endpoints.

The code that results forms a web application that can provide the output of each web request in a
variety of different formats. A site designed in such a way is an enormous convenience to the developer.
If suddenly you need to support CSV dumps of your data, all you need to do is describe what a CSV
dump looks like and add that output format as another option on your controllers. This is the type of
decoupling that MVC-based design aspires to enable.

The following sections show you how to implement your controller actions to address the requested
actions first and decide on an appropriate format for response second. Then, when people ask whether
you're planning to add an API to your site, you can smile and say, "It was an API from day one.”

Routing

Routing is the key enabler that makes this new breed of Web APIs possible. Routing is a process by which
an incoming HTTP request is matched to a particular piece of code (in Rails’ case, a controller action) that
should respond to that request. To do this, Rails scans incoming request URLs against a series of routes
specified in the config/routes.rb file in your project. This routing step is what transforms the URL
from an old-school file reference into a new-school conceptual identifier. The URL is input to the router,
an address in conceptual space rather than an address on your file system.

93

Chapter 5: Beautiful Web APIs

94

Here’s how the routing process works: When a new request arrives at your server, the web server first
checks to see whether a static file with the given path is available in the public/ directory. If it is, the
URL is interpreted as a location of a file in the web application’s local filesystem and the contents of that
file are simply returned to the user, effectively making routing backward compatible with the traditional
way of using URLSs. If the URL path does not match a file in the public/ directory, the request is handed
off to Rails, which attempts to match the request path with a known route.

The routing process uses a series of route definitions that you provide to define the URL endpoints that
your web application will respond to. Each route is a pattern to be filled in — like a Mad Libs game for
URLs. Routes are examined in the order in which they appear in the routes.rb file, and the first one that
matches the requested path is the one that determines the ultimate destiny of how that request will be
handled.

Conceptually, these Route Libs look something like what is shown in Figure 5-1.

Route Libs uriedition
Ve \

‘/blog/:year/:month/:day/:title..format’, :controller => ‘blog’, :action => ‘view’

‘/blog/ 2007/ 12 / 3 / hello. xml

Resulting Parameters Hash
controller action year month day title format
blog view 2007 12 3 hello xml

. J
Figure 5-1

This picking-apart of the URL is not possible in a world that views web applications as directory hier-
archies containing active files. In these document-centric worlds, the URL is just a path relative to the
“webroot.” With the router way of thinking, the URL is a template mapping into the concepts and actions
on those concepts that your web application provides.

The actual route definition has three parts in the code:

1. The name
2. The template
3. Hash of defaults and validations

These three pieces are strung together into code that looks something like this:

map.connect 'photos/:user_handle/:photoset',
:controller => 'photos',
raction => 'list’

The name of the route is defined by the method that you call on the map object. So, if you call map.user to
create your route, that route is associated with the name user, giving you such methods to use in your
code as user_url and path_for_user. The route map.recipe would create a route called recipe. If you
don’t want to name a route (and sometimes you have no reason to), map . connect is the default method
that will wire up a nameless one for you, as in the preceding example.

Chapter 5: Beautiful Web APIs

The next piece in a route definition is the route template. The route template is shown as photos/ :user_
handle/:photoset in the preceding example. Any path segment beginning with a colon represents a
variable to be filled in — the fill-in-the-blanks of the Mad Libs. Anything else in the route is a required
segment of the path that must appear verbatim. So, a path of my/super/secret/page defines a route with
no variability; the URL path must appear exactly like that for the route to match. A route of secret/:code
will match many different URLSs, though — any two-segment path that begins with secret/ and ends in
some other characters. What comes after the segment secret/ will become the contents of the params|[: code]
variable available within the controller.

In Rails fashion, a few of the variables are reserved for special purposes, and some are even required. The
:controller variable must be defined in each route, either as a templated variable in the path definition
or in the options hash (described below) that follows it. The :action variable is also special because

it defines which action on the controller should be called to answer the request. If this variable is not
provided as part of the route definition, Rails will assume that you want its value to be index. (If no
index action is present on the controller, you'll receive an error. Finally, the optional : format variable
provides a way to specify the desired response format. This variable provides a way other than MIME
for clients to specify what response format they prefer. The ability to incorporate desired response types
so easily into the route is one of the cornerstones that makes API building so easy.

The third component in a route definition is the options hash, which contains additional settings for the
route, such as default values and validations. This hash might be default values for variables that may or
may not be in the path template. The preceding code example sets the :controller variable to photos,
for example. It also might contain regex-style restrictions on the format of data passed into a template
variable from a URL segment. This additional regular expression allows you to place additional restric-
tions required for the route to match, letting you reduce the need for error checking later on. Requiring
that all IDs must be numeric is one example of this that would alleviate the need to sanity-check IDs in
your model or controller code.

All together, your routes.rb file ends up being a nice, easy-to-read URL design file that looks like this:

Maps URLs such as '/dinner/12' to the Recipe::Feature action, setting the
dinner_feature_id parameter
map.connect 'dinner/:dinner_feature_id',

:controller => 'recipe',

raction => 'feature'

Maps to a user's calendar, defaulting to the current day, month, and year
map.connect 'user/:user_id/calendar/:year/:month/:day,

:controller => 'calendar',

raction => 'view',

:year => Time.now.year,

:month => Time.now.month,

:day => Time.now.day

Defaults any URL in the form of /A/B/C to the A::B action, with parameter ID=C
map.connect ':controller/:action/:id'

Because the routes.rb file is the link between all nonstatic web requests and your application code, it
is clear that URL design is a very engineered and explicit step in Rails application development. Even
the most artsy of web pages has a URL that has been consciously defined with a route. These routes
represent the public interface of an API, even if that API returns only HTML pages. In an API, the pro-
tected and private methods that accomplish the low-level work are completely hidden from the API user.

95

Chapter 5: Beautiful Web APIs

Similarly, in a Web API with routes, the actual file structure of the web application performing the work is
completely hidden from the user — a complete separation between the files that make your web applica-
tion work and the URL patterns that provide access to that functionality.

With the freedom to design URL templates for your web application however you want, remember to
make them predictable and simple. Avoid creating extremely long routes with a lot of parameters; with
them, your URLs are no better looking than those of the late 1990s. The key is simplicity: Reduce your
application to the fundamental concepts that your users are interested in and the actions that you might
want to perform on those concepts. Those are your route definitions. Anything else — clarifying infor-
mation such as sort order, referral codes, or result offsets — should be kept as URL-encoded parameters
that come after the URL. This way, the URL path always represents a clear concept and the parameters
just provide additional (and optional) fine-tuning for the way in which a request is processed. Chapter 6,
“Resources and REST,” will provide significant guidance on this matter because much of it deals with
the decomposition of your public API into concepts called resources.

Anatomy of the Web API Call

URL routing opens the doors to user-friendly HTTP-based APIs and allows URLs to represent virtual
endpoints within an application’s functionality. These endpoints aren’t enough to fully specify the Web
API call, though. Altogether, a Web API call has four distinct components.

These four components, described in the following table, look a lot like the components of a traditional
method call, with a few exceptions: The function caller gets to request a return type, and an HTTP com-
mand is provided alongside the method call as a bit of data to guide the execution of the method.

Component Provided By Purpose

Controller and Action Route definition Picks a particular controller class and
method on that class to execute in response
to the web request

Response Format HTTP headers or route Specifies what format the response from the
definition (the : format action should be provided in
variable)

Request Parameters =~ Form data or URL-encoded Provides additional parameters used to
parameters fulfill the basic request

HTTP Command HTTP request Asserts the basic nature of the

request — whether it intends to fetch data,
modify data, add data, or delete data

When you define your routes, this is the larger context into which they fit. Your web site is a collection
of endpoints, each defined and accessed using the four components in the preceding table. Usually,
these endpoints are served in HTML, but because the client can request other response formats, these
endpoints also act as your programmatic APIL In the next section, you'll see how to handle multiple
response formats within the same action.

96

Chapter 5: Beautiful Web APIs

Colliding (and Sometimes Incompatible) Worldviews

Revisit this section of Chapter 5 after you learn about REST-based design in Chapter 6.
The ideas about Web API design presented here differ slightly from those that you will
encounter in the next chapter. Neither of the two approaches is categorically superior;
each has pros and cons, and each lends itself to a different vibe of design.

Overlaying the API

After you've designed the URL patterns that represent the concepts and actions of your web application,
it is time to overlay the non-HTML response formats alongside the HTML ones that you've probably
already developed. Overlaying the API is just like coming up with the view of your web site, except
that these new, alternative views are probably dynamically generated rather than stored in a collection of
ERB files as their RHTML counterparts are. Overlaying the API takes two steps: First, you must multiplex
each action’s response based on the response formats you offer; second, you need to ensure that you can
generate an appropriate response for each action in each format.

The respond_to Method

The ActionController framework provides your controllers with a very clever method called
respond_to that makes serving up multiple formats from the same action easy. The method yields
an object that you can use to specify code that executes only if the request asks for a particular
format.

Using the respond_to method makes it easy to keep the implementation of the action and the implemen-
tation of the response relatively separate within the body of the action. The cleanest way to arrange both
is to perform whatever work needs to be done for the action first and then finish the action’s implemen-
tation with a respond_to block defining the different ways the results of that work can be expressed. The
following code shows a template of this strategy:

class SomeController
def action

Once that's done, provide the results of the work in a variety of formats

respond_to do |:type|
type.html { # Usually an empty body }
type.xml { # Usually a .to_xml call }
type.rdf { # Usually a .to_rdf call }

97

Chapter 5: Beautiful Web APIs

98

type.js { # Usually an RHTML partial or RJS template }
end
end
end

This template works well to consolidate the behavior of each possible response format around a single
implementation of the action above the respond_to block. Here is how the template looks when applied
to a real controller action; in this case, it’s one for viewing a photo:

class PhotoController

def show
@photo = Photo.find(params[:id]) # Set up variable required by the view
respond_to do |:type] # Render the view in requested format
type.html {} # fall through to RHTML
type.xml { render :xml => @photo.to_xml }
type.rdf { render :rdf => @photo.to_rdf } # requires acts_as_rdf plugin

type.js { render :partial => 'photo', :locals => {:photo => @photo }

end
end
end

The only operation this action takes is to find the photo; displaying the photo is handled by the view
code that the action yields to. If the method of finding the photo were to change (perhaps the ID should
instead be relative to a particular user’s photo stream), the implementation need be changed only once
across all response formats.

Sometimes the operation that an action causes is more complex than simply loading a photo. You'll need
to be prepared to catch any errors that might happen and respond to the user with an error message in
an appropriate format. Handling errors poses a problem in our neat and tidy respond_to world: How
do we keep the response format details from getting tangled up with the implementation of the action
body if we might need to bail out with an error at seven points in the middle of an action? Luckily, this
problem has a solution.

Recall from the previous chapter the design technique of embedding most of your heavy functionality
inside the model layer and using custom exceptions to report any errors. If you follow this error-handling
strategy and use custom exceptions with clear messages, exceptions can be the solution that keeps your
action implementations simple.

Rather than fill your action code with layer after layer of nested conditionals to check for errors after they
occur, write your model objects so that they raise exceptions as soon as errors occur. This way, you can
be sure that as long as the script is still flowing, nothing that you've planned for has gone wrong, and
you are free to plow ahead as if no error checking is necessary. Meanwhile, behind the scenes, you know
that an exception will be raised if something does go wrong during the execution flow. To handle these
exceptions if they are raised, surround your action with a rescue block that will gracefully handle the
error and report it to the user in a number of formats.

Chapter 5: Beautiful Web APIs

Here is the template of a multiformat action that performs error handling. Notice how it looks just like
the previous template except the response format fan-out occurs twice — once for a successful response
and once for an erroneous one:

class SomeController
def action

Once that's done, provide the results of the work in a variety of formats

respond_to do |:type|

type.html { # Usually an empty body }

type.xml { # Usually a .to_xml call }

type.js { # Usually an RHTML partial or RJS template }
end

rescue => err
Oh, no! An error occurred. Respond with the error.

respond_to do |:type]
type.html { # Usually a redirect with a flash message }
type.xml { # Usually an error structure or HTTP error }
type.js { # Usually an action-specific safe response with a

JavaScript-based flash message }
end
end
end

As with any pattern, this template isn’t a panacea for handling all possible errors. Situations may still
arise that require finer-grained attention within your controller actions in order to attempt recovery or
change the action’s behavior. But this basic template will give you a solid starting point within which to
fill your own code.

Using the respond_to block, the routes that once defined endpoints into your web site have now become
programmatic endpoints into a web application. If you've designed your web site well, little work is
needed to extend your existing actions so that they work with programmatic formats such as XML. The
action implementations are already there, so the only work left is to define the way in which the result of
the action is translated into each possible response format.

Writing a Non-HTML Result

Creating the output for a non-HTML result is often easier than creating it for HTML because unless
you're writing to a visual medium such as PDF, you are likely interested in only the raw data. Where this
process becomes more complicated than HTML is in your ability to change the way you express your data
after you've already released an APIL. Though you can change the look of your HTML output anytime

929

Chapter 5: Beautiful Web APIs

without serious side effect, changing the structure of XML output, for example, can be a traumatic event
if you have many API users. So design with care when you construct outputs in languages such as XML
and RDF, because it might not be that easy to change your mind after you've deployed the service.

This section describes three data formats that you may want to use for an API and how to get started
with each: XML, RSS, and RDF.

Grouping XML, RSS, and RDF

Purists will note that grouping XML, RSS, and RDF is a bit like grouping apples and
oranges: XML is a data-representation syntax, RDF is a conceptual model for graph-
based data that can be transcribed in XML, and RSS is a syndication standard that can
also be transcribed in XML. But despite their different natures, their grouping makes
sense because as far as APIs are concerned, these three are the most important data
formats on the Web today.

XML

If you don’t mind your XML documents matching your database schema exactly, writing XML output
from a Rails application is just a one liner. Every ActiveRecord object has a to_xml method that will scan
the fields of the model object and write them as though they were XML tags, so a respond_to block that
looks like this:

Quser = User.find(params[:id])
respond_to do |:type|

type.xml { render :xml => @user.to_xml }
end

could produce the following XML:

<user>
<first_name>Ted</first_name>
<last_name>Benson</last_name>
<address>...</address>
</user>

The to_xml function also supports an options hash that can both limit which fields are included in the
XML and extend the serialization to associated model objects. For example, passing the hash
:include = > [:associationl, :association2] will cause the XML writer to recurse into those
ActiveRecord associations and include them in the XML serialization.

The easiest way to customize the XML output for a particular action past what ActiveRecord generates
for you automatically is to use RXML templates. These files are similar to RHTML files and live in the

same place in your project structure, but they use a framework called Builder rather than Actionview.

RXML files are regular Ruby files that are passed a Builder instance named xml that you use to construct
your XML document. Don’t let the file extension fool you: these are Code-First files, not Document-First.

100

Chapter 5: Beautiful Web APIs

Whereas the output of an RHTML file is anything that is rendered outside the <% ... %> tags, the output
of an RXML document is the result of calls to the xml variable in your RXML document. In other words,
RHTML files are document-first style, but RXML files are code-first style.

To create a tag, simply call the tag name as a method on the Builder object. This method call doesn’t
exist, of course, but gets passed to the method_missing routine on the object, which the builder interprets
as an instruction to create a new tag. (You will learn how to develop with method_missing in Chapter 10,
““Code That Writes Code (That Writes Code).””) How this tag looks depends on how you make the
method call:

Q Givenno arguments, the builder will create an empty tag. So xml1.br will yield <br / >

Q Given an argument, the builder will create a tag that contains a literal. So xm1.h1 ("Hi!") will
yield <hl >Hi! < /hl > . Attributes are added as a hash passed in as the last argument to any
method call that creates a tag. So creating a hyperlink with the builder would look like the
following:

xml.a "Art of Rails", :href => "http://www.artofrails.com"

0 Given ablock, the builder will create a tag that contains any tags created inside that block. So the
command

xml.people {
xml.person {
xml.first_name ("Ted")
}
}

will yield the XML

<people>
<person>
<first_name>Ted</first_name>
</person>
</people>

Put these three basic behaviors together, and you have all the building blocks for an XML document
of any complexity. There’s a bit more to learn (such as declaring the document type, XML comments,
and so on), and the best place to do so is in the documentation for the Builder class at http://builder
.rubyforge.org/.

RSS

RSS feeds have become an important way to allow users to maintain loose ties to your site. Often, a user
does not want to check your blog or a particular feature of your application (for example, whether the
user has new friend requests in a social network) every day, but the user is still interested in responding
to those items when they do occur. Using an RSS reader, users can automate the task of checking to
see whether something has changed and be alerted by a preview of the change so that they can decide
whether they want to visit your site.

101

Chapter 5: Beautiful Web APIs

Creating an RSS feed for your Rails application is a great exercise in learning RXML because RXML is
exactly how you do it. To get started, here is a template of what a one-article RSS 2.0 feed for a blog might
look like:

<?xml version="1.0"?>
<rss version="2.0">
<channel>
<title>Art of Rails Blog</title>
<link>http://www.artofrails.com/</1link>
<description>In search of artful bits of programming goodness.</description>
<pubDate>Sat, 07 Dec 2007 00:00:01 GMT</pubDate>
<item>
<title>Welcome to the Blog</title>
<link>http://www.artofrails.com/posts/1</link>
<pubDate>Sat, 07 Dec 2007 00:00:01 GMT</pubDate>
<description>This is the first blog post. Have you ever...</description>
</item>
</channel>
</rss>

The root tag is named rss, followed by a channel tag that contains the hypothetical blog’s feed. After a
few descriptors describing the channel, a series of item tags contain descriptors about the blog posts that
they represent. Transforming this code into RXML is just a matter of taking each element in the example
feed and turning it into a call to the XML Builder object. Following is what that resulting rss.rxml file
might look like, contributed by Scott Raymond, author of Ajax on Rails (O’Reilly).

xml.instruct!
xml.rss "version" => "2.0", "xmlns:dc" => "http://purl.org/dc/elements/1.1/" do
xml.channel do

xml.title "Feed Name"

xml.description "Feed Description"

xml.link url_for :only_path => false, :controller => 'posts'
xml.pubDate CGI.rfcll123_date @posts.first.updated_at if @posts.any?

@posts.each do |posts|
xml.item do
xml.title post.name
xml.link url_for :only path => false,
:controller => 'posts',
raction => 'show',
:id => post.id
xml .description post.body
xml.pubDate CGI.rfcll23_date post.updated_at
xml.guid url_for :only path => false,
:controller => 'posts',
raction => 'show',
:id => post.id
xml.author "#{post.author.email} (#{post.author.name})"
end # End <item>
end # End posts.each
end # End <channel>
end # End <rss>

102

Chapter 5: Beautiful Web APIs

Notice how this code depends on the existence of only one variable, @posts, that would have been set by
the controller. Just as the URL bound to this action would have returned a web page listing all the blog

posts if a web browser had asked for it, that same URL can provide the same information in RSS format
when asked for by a news reader.

RDF

RDF is a web-native resource model and language for describing resources, their properties, and the
relationships between them. The language views the world as a graph of nodes, representing resources,
and arcs running between them. Both nodes and arcs are represented by URIs (arc targets can also be
data literals), which makes RDF good at describing both abstract objects and resources on the web.

Although RDF does not enjoy nearly the popularity that free-form XML currently does as a medium
for information exchange, its support is steadily growing because of RDF’s ability to ease the process
of merging information from multiple data sources. Graph-based information storage can be frustrating,
but it is also amazingly flexible; if you gather statements about a resource from several different locations,
it isn’t any harder to merge that information than if you had gathered them all from the same place. As
the world of web mash-ups increases in complexity, RDF should play a big role enabling that richer
exchange of information.

An easy way to provide RDF as an API data format is to use the acts_as_rdf plug-in from www
.artofrails.com. This plug-in provides your ActiveRecord model objects with a to_rdf method with
similar characteristics to the to_xml one they already have. It also adds a to_rdf method to Collection
objects so that you can render an entire group of model objects as RDF at the same time.

By default, acts_as_rdf will use your site’s configured domain name and the model object’s resource
path as a namespace, and it will guess property names based on your database schema. These can all be
overridden if necessary, and as can to_xml, the to_rdf method can be instructed to follow associations
and include those objects in the serialization as well.

Adding Custom MIME Types

In order for Rails to respond to the type requested by the Accept header, it needs to know what that
format is. By default, Rails recognizes only a few basic types of response format:

Q HITML

Q XML

QO]S (Used for AJAX requests)
Rails keeps track of data formats the same way that virtually all other Internet applications and protocols
do: with MIME Types. MIME stands for Multipurpose Internet Mail Extensions and was developed as
a way for e-mail programs to support more complex data than just plain-text ASCII. Although much of

MIME remains only in the e-mail world, its taxonomy of data formats is used across the Internet as the
standard way to describe how to interpret a piece of data.

Virtually all existing data types that you would want to use over the Internet have a preexisting MIME
name that you can look up and add to your Rails project configuration to support it. MIME Types are

103

Chapter 5: Beautiful Web APIs

maintained by the Internet Assigned Numbers Authority IANA) and are available on IANA’s web
site at http://www.lana.org/assignments/media-types/. There you'll find a page with nine top-level
categories of types, as follows:
0 application
0 audio
example
image
message
model

multipart

O 00000

text

O video

Each category is a link to the registered types that fit that category. When you find the type that describes
your data, the final description to use is the category, followed by a forward slash, followed by the type
name. So if you want to add JPEG images as a potential response type, after finding the jpeg entry under
the image category, you would know that the proper MIME type is image/jpeg.

If you can’t find a suitable type that describes the data format you are using, you can create your own, as
you will see shortly.

Registering Types with Rails

After you know what MIME Type you want to support, registering it with Rails is easy. Open the
config/initializers/mime_types.rb file and add a line in the form of:

Mime: :Type.register "image/png", :png

This line makes Rails aware of your new type application wide so that you can reference it in your
controllers just as you would the built-in types html, xm1, and js. The first parameter to the Mime: : Type.
register function provides the description of the type according to MIME. This is what would be stored
in an HTTP Accept header. The second argument is a symbol that you want to use throughout your Rails
application to refer to that type. This symbol is also mapped into the handler that processes the : format
variable in any routes you define.

Using the preceding type registration, a controller action that had the ability to render a user’s social
network as a PNG image could use :png as an option in the respond_to block:

respond_to do |:type|
type.html { # fall through }
type.png { render_png_image }
end

This functionality could be invoked by the remote user either by specifying image/png as the first-priority
Accept type in the request header, or by ending the request that led to this action in .png.

104

Chapter 5: Beautiful Web APIs

Creating Your Own MIME Type

If you are really pushing the envelope and want to create an unofficial type for that new data format
you just created to describe streaming interactive holograms, you can do that, too. The general format
for custom data types is to pick whatever top-level type is appropriate and combine it with the name of
your creation as the subtype, prefixed by ""x-" for experimental. Usually, unofficial MIME Types are filed
under the application super-type (because everything is application specific until it becomes a standard),
but you can pick any one that you feel fits. A few more naming tips:

Q If your name has multiple words, separate them with periods. For example: application/
x-hyper.dimensional.holography

Q If your data format is based on an existing syntax, such as XML, incorporate the name of the syn-
tax into the subtype name after a plus sign. For example:

application/x-hyper.dimensional .holography+xml

API-Metering, the Rails Way

Depending on the type of API you offer, you might want to consider metering access. If your API pro-
vides alternative data formats intended for human reading, such as PDF, you might not need to meter;
it is safe to expect that usage patterns of this type of API will be similar to those of the HTML version
of your site. For formats that are intended to be used by a computer, however, such as XML and RDF,
metering API access is an important step to protect the stability of your application.

Here’s the scenario: You offer a directory of pizza parlors across the world, complete with their menus
and offerings — a one-stop shop for pizza connoisseurs. You also wrote an API that allows queries to
your site to be answered in XML so that other programs can easily use your data. You offer all this for
free because you are, after all, dedicated to the higher cause of promoting pizza appreciation around
the world.

But then a new craze catches on in Japan: After a pop star announces that she will stay in hotels only
within walking distance of pizza parlors that serve mayonnaise-topped pizza, the entire country goes
pizza wild. All the travel agencies begin offering web mash-ups of their hotel deals with nearby pizza
outlets. Their source for this pizza information? Your APL

Your web server catches on fire from the heat generated by the heavy load on your dual Ethernet cards.
Who knew XML was flammable? As you fight the fire with a garden hose and hold back your tears (you
didn’t make any backups), you think to yourself: Why didn’t I implement API metering?!

The following sections will show you how to weave API metering into your site so that you can imple-
ment it in a few short blocks of code and apply it cleanly to any API methods that you need to protect
from the mayonnaise-pizza—crazed public. All the code from this section is available for download from
the book’s companion web site at www.wrox.com or from www.artofrails.com.”

Authenticating the User

The first step in metering an API is authentication, because you can’t meter a request unless you know
who's asking. There are two broad categories of APIs when it comes to authentication: those that care

105

Chapter 5: Beautiful Web APIs

about authenticating only so that they can meter usage and those that need to protect private data. Google
Maps, for example, falls into the former category, and the Facebook API falls into the latter.

If you're of the first group, then the typical API key pattern will work just fine for you. If you are among
the latter group and are exposing user-specific data over your API, then you should consider offering

a more complex, session- or token-based API login mechanism that will provide more robust security
around access to your site.

The API key pattern is one in which an API user’s user name and password are rolled into a single string
of characters called the API key. This string is usually long (you never actually type this key by hand; it
is intended for programmatic use) and is automatically generated by the web application. Each API key
serves as the unique identifier for a particular API user and is sent as a parameter on the API request for
identification.

Because this form of authentication is vulnerable to attack, many sites employing this scheme will use
it in combination with an IP ““whitelist” that contains a list of the IP addresses that are allowed to make
requests using this key. If the requesting IP is on the whitelist, the authentication succeeds. If not, it fails.
Access to modifications of this whitelist is controlled more stringently through the HTML version of the
web site.

Using API keys together with IP whitelists is a simple but effective way to provide authentication for a
site. Following is an example of how you might do it.

First, create an ApiUse model class that will belong_to your User models and will contain the informa-
tion necessary to track a user’s API use. For now, this model has only three fields besides the implied
id field.

ApiUse

user_id Api_key allowed_domains

Next, create an authentication function on the ApiUse class that either returns the ApiUse instance object
or throws an exception.

def self.authenticate(api_key, requesting_address)
api_use = ApiUse.find(:first, :conditions => "api_key = '#{api_key}'")

Make sure the API Key refers to an existing ApiUse
raise ArtOfRails::Chapter5: :UserNotFoundError,
"Invalid API Key." if api_user == nil || api_use.blank?

Make sure the requesting_address is in the whitelist
Assumption: the whitelist is a comma-separated list
unless api_use.allowed_domains.split(',').include? requesting_address
raise ArtOfRails: :Chapter5::DomainNotAuthorizedError,
"Requesting Host Not Authorized"
end
api_use
end

106

Chapter 5: Beautiful Web APIs

This function performs two checks on the data passed to it. First, it makes sure that the ApiUse referenced
actually exists. Second, it checks to make sure that the provided requesting address is a member of a
serialized array of allowed hosts stored on the ApiUse object. If either of these conditions is false, then it
raises a custom exception defined in a module elsewhere in the project. If all goes well, then it returns the
ApiUse object.

The Metering Algorithm

After you've authenticated the user, the next step is to ensure that the user hasn’t exceeded whatever
limits you’ve placed on him or her. The standard metering algorithm is based on the idea that users must
sign up for accounts to use your API, and each user gets X number of calls to your API every T units of
time, with no rollover. This algorithm can be implemented around two columns in your API use table:
last_access and accesses_this_period.

ApiUse

user_id api_key Allowed_domains last_access accesses_this_period

Let’s simplify the algorithm further by saying that the ““T units of time”” bit is always going to be some
regular calendar interval, such as an hour or a day. The example code here assumes one day to make the
date math nice and easy.

The following code is one example of how you can implement a metering function. This implementation
raises an exception if the user exceeds his or her limit, rather than returns a Boolean false. For this
code to work, define the constant DAILY_API_LIMIT in your config/environment.rb file as an integer
representing how many times per day any one user may use your site’s API. This code should be placed
as a method on your ApiUse model object.

def record_api_request
if (self.last_access < Date.today + 1)
They haven't yet used the API today
self.last_access = Date.today
self.accesses_this_period = 1
self.save
elsif self.accesses_this_period >= DAILY_API_LIMIT
They've used the API too much!
raise ArtOfRails::Chapter5: :UsageLimitExceededError,
"Daily Usage Limit Exceeded"
else
Not the first use, but still within their limits
self.accesses_this_period = self.accesses_this_period + 1
self.save
end
end

So on any particular ApiUse model instance, the record_api_request will attempt to increment the
number of API calls that the user has made on the current day. First, it checks to see whether the last
request was made on the current day. If it wasn’t, then it resets the count to 1 and sets the last access to
today’s date. If it was, then it tries to increment the access count. If the user has already met the daily
limit, then this value cannot be incremented and an exception is thrown.

107

Chapter 5: Beautiful Web APIs

Applying Metering via Filters

With both the authentication and metering functions in place, the only challenge is to apply them to your
code without cluttering the implementation of your actions. Remember that Rails-style programming
places a high value on code that appears neat and clean. Using filters, you'll create an implementation
that can be added onto actions that serve as API endpoints outside the implementation of those actions.
This approach will let you keep the code inside your actions focused on the goal of the action and not
cluttered with code concerning the API policy of the web site.

Remember from Chapter 4, “Getting the Most from M, V, and C,” that filters are a way to stack cross-
cutting code before or after a controller action is processed. Filters get access to all the information that
the action gets, and they can alter the way the request is handled, from changing the response sent to

the user to canceling the execution of the action entirely. The heart of the filter is just a method on the

controller.

The goal is to create a method that applies both API authentication and the metering to an incoming
request. If the request is successful, then the function simply returns, and the request passes normally
to the requested action. If an exception is thrown during the authentication or metering steps, however,
then the method catches it and prevents the action from being called. In a real implementation, you
would also want to provide some sort of error response appropriate to your application so that users
know what went wrong. This code is written to be used as an around_filter.

def api_auth

Note: A real application should implement a better way of judging

the response format that will be used (see sidebar below)

response_type =

Mime: : EXTENSION_LOOKUP [params|[:format]].to_sym rescue response_type = :html

if API_TYPES.include? response_type
@api_use = ApiUse.authenticate(params]|:api_key], request.remote_ip)
@Qapi_use.record_api_request

end

yield

rescue ArtOfRails::Chapter5: :UserNotFoundError,

ArtOfRails: :Chapter5: :DomainNotAuthorizedError,
ArtOfRails: :Chapter5: :UsagelLimitExceededError => err

TODO: Provide a response to the API user

false
end

Add this code to the ApplicationController so that it is available throughout your application. An
additional constant, ApI_TYPES, should be added to your config/environment.rb file to define the data
formats that you’d like to meter as API calls. The constant definition might look like

API_TYPES = [:xml, :xrdf, :csv]

Finally, in each controller that contains actions you’d like to meter, add a reference to this method as an
around_filter, like so:

around_filter :api_auth, :only => [:actionl, :action2, :action3]

108

Chapter 5: Beautiful Web APIs

That’s a nice one liner that is easy to read and understand, and it is all you'll need going forward to
protect any controllers that provide raw data. The actions that are metered will need to know how
to respond properly to API requests using a respond_to clause, but they can now be implemented
without any knowledge of metering or authentication occurring.

Spot the Security Vulnerability

Look at the following line from the api_auth method in the “Applying Metering via
Filters” section and try to spot the concern:

response_type =
Mime: : EXTENSION_LOOKUP [params|[:format]].to_sym rescue response_
type = :html

Your intention is to determine what the response format of the request will be so that
you can decide whether the request needs to metered. HTML requests might not be
metered, but XML requests might be, for instance.

The problem is that this line attempts to discover the response format using only the
params [: format] variable, which is set only if the URL takes the form /path/to/
resource. format. In reality, content-type negotiation is not that simple. Rather than
use a format extension on the URL, API users might choose to send a whole list of
Accept headers with the API request. The content type of the response will then be the
result of a negotiation between the content types that your application supports and
the list of acceptable types provided.

Given that, can you spot the security vulnerability in the aforementioned code? (Hint:
What happens if the format is set to XML using HTTP headers rather than the URL?)

You can test this vulnerability with the command line curl program:
curl -H "Accept: text/xml" localhost:3000/your/api/call

The command will return the XML response from your Rails API, but the ApiUse object
will not show an increased usage count. This is because the params|:format] vari-
able will evaluate to nil (because none was provided in the URL string), causing the
api_auth method to default it to html and skip API metering. When the execution
reaches the action, however, Rails will correctly determine from the HTTP Accept header
that the response format should be XML.

To implement the api_auth algorithm securely, you must determine the response type
the same way that Rails does so that you know that your decision to meter or not to
meter is the right one. To do this, look at the ActionController::

MimeResponds module in the Rails source, and either mimic or directly call the algo-
rithm that you find there.

What about SOAP/XML-RPC Services?

Much of the latest Rails API development concentrates on providing HTTP-based APIs that operate as
alternate data formats available at the exact same endpoints as the HTML version of the site. Despite this,
Web Services (the ones with a capital W and S) haven’t gone away and are popular in enterprise-centric

109

Chapter 5: Beautiful Web APIs

environments. This section explores briefly how to implement APIs based on SOAP and XML-RPC in
Rails using the ActionWebService framework.

Services developed using ActioniiebService require three definitions: service API, service implementa-
tion, and struct definition.

Service API

Whereas service APIs in normal Rails applications are defined implicitly by the routes that you set up
to map URLs into your application, SOAP Web Services are a bit more strict and require an explicit
document that states what is expected and offered by the service. This API definition is translated into
the WSDL document that clients use to bind their code to your remote service.

Defining a SOAP-based API is much like writing a header file in a C++ program or an interface in Java.
The intent is to formalize a contract that places expectations on both the client and the server. When
everything works as advertised, the effect removes the need for a human to manually configure and test
whether the service bindings work.

As does an ActiveRecord migration, Web Service API definitions in Rails take the form of a Ruby class
filled with macros that define the items available on that class. Instead of fields, the API definition con-
tains method signature definitions. Each method signature represents one method call that the service
agrees to provide to remote users.

Each method signature contains two parts: :expects and :returns. These arguments map to an ordered
array of values that represent information that should be provided to the method call and information
that will be returned from it, respectively.

Each of the elements that can be expected or returned takes one of three forms:

QO A symbol specifying a primitive data type (such as :integer, :string, or :boolean).

0 A class that derives from a structured type, such as ActionWebService::Struct or
ActionWebService: :Base (see the “Creating Structs” section, later in this chapter).

0 Asingle element array containing one of the previous two items. This denotes that the argument
is not a single object of the specified type but an array of those objects.

These three element types provide enough flexibility to describe a wide array of method signatures.
Here is an example of an API description that contains three methods. The first, £ind_recipe, takes a
RecipeQuery object and returns an array of Recipe objects. The second, rate_recipe, takes two integers
and returns nothing. The third, add_comment, takes an integer and a string and also returns nothing.

class RecipeAPI < ActionWebService::API::Base
api_method :find_recipe, :expects => [RecipeQuery], :returns => [[Recipel]
api_method :rate_recipe, :expects => [:int, :int]
api_method :add_comment, :expects => [:int, :string]

end

You might guess, with good chances, what the arguments on the last two methods are meant to represent,
but it would help to be able to name these arguments. Rails provides a way to name these parameters by
substituting each individual element with a hash that maps the parameter name to the element definition.
So what once was : string would become {:comment = > :string}.

110

Chapter 5: Beautiful Web APIs

class RecipeAPI < ActionWebService::API::Base
api_method :find_recipe, :expects => [RecipeQuery], :returns => [[Recipel]]
api_method :rate_recipe, :expects => [{:recipe => :int}, {:rating => :int}]
api_method :add_comment, :expects => [{:recipe => :int}, {:comment => :string}]
end

These service definitions live in the app/apis directory of your Rails project, a directory not automatically
generated as part of an empty Rails project. The filename should match the name of the API, so class
RecipeAPI would become recipe_api.rb.

Service Implementation

In contrast to the Web APIs techniques shown in the rest of this chapter, ActionwebService-based APIs
cannot easily share implementations with other response data formats. Although ActioniWebService
allows your service implementation to exist on regular Rails controllers, the actions it uses work a

bit differently from normal Rails actions. ActionWebService actions take arguments as part of their
method signatures instead of through the params hash, and they do not render any results. Instead, they
return the value that should be serialized as the response to the remote method invocation. So although
ActionWebService methods might share the same surroundings as your web-based code, getting them
to share functionality is tricky.

You have three different approaches to mapping an ActionwebService-based service onto a controller:
direct, delegated, and layered. Each offers increasingly flexible management of service endpoints. I cover
only the direct approach here, but more documentation is available online at the Ruby on Rails manual
(http://manuals.rubyonrails.com/read/chapter/69).

Assuming that your service definition is stored following conventions in the app/apis directory, the
controller by the same name (for example, RecipeController) is automatically associated with it. All
you need to do is implement each method described by the API definition as a public method on the
controller.

For example, the method described in the API definition by

api_method :find_recipe, :expects => [RecipeQuery], :returns => [[Recipe]]
might be implemented as
def find_recipe(recipe_query)
@recipes = Recipe.find_with_query_obj (recipe_query)
@Qrecipes
end
Or the method
api_method :add_comment, :expects => [:int, :string]

might be implemented as

def add_comment (recipe_id, comment)
@recipe = Recipe.find(recipe_id)

111

Chapter 5: Beautiful Web APIs

@recipe.add_comment (comment) unless @recipe.nil?
end

In short, the method must be public, must take in the :expects objects as its method parameters, and
must return an object matching the :returns definition.

Creating Structs

Many times, an object required or returned by a Web Service is more complicated than a primitive data
type. In these circumstances, ActionWebService provides the ability to define a class reminiscent of a C
struct that specifies how a combination of primitive data types and other structs come together to form
a composite object. In the API definition given above, two such objects were used — RecipeQuery and
Recipe — both to make the find_recipe service call possible. Each of these can be defined with the
ActionWebService: :Struct superclass.

The ActionWebService: :Struct base class provides macros to its children that allow them to define
fields on an object in a manner similar to the service API definition you just saw. Here is an example
of what the Recipe struct might look like. It contains several basic data types, an array of strings repre-
senting the genre of food the recipe falls into, an array of strings representing the URLs of photos of that
recipe, and an array of Ingredient struct objects.

class Recipe < ActionWebService::Struct
member : name, :string
member :rating, :integer
member :genre, [:string]
member :author_name, :string
member :author_id, :integer
member :photo_urls, [:string]
member :ingredients, [Ingredient]
member :directions, :string
end

Using structs like these is the Web Services alternative to returning an XML document (it gets serialized
to XML behind the scenes, but you don’t deal with that serialization). Any client with properly generated
stubs will experience the result of a Web Service call as first-class objects accessible from within the
programming environment instead of as documents full of tags.

Summary

This chapter covered a lot of ground about the way your site interacts with its users. It described the
new breed of HTTP-based Web APIs that the Rails community is popularizing and explained why this
approach to API development can save developers a great deal of effort. The chapter touched briefly on
routes — how they act as an API definition for your site and how to build them — and it discussed the
respond_to mechanism in Rails controllers that allows a single action to provide its response in many
formats. I also covered how to create responses in a few of the more popular formats — XML, RSS, and
RDF — with pointers to more documentation online. Finally, I included a high-level run through of
ActionWebService to give it its share of coverage amidst all the attention that other API techniques have
been getting these days.

112

Chapter 5: Beautiful Web APIs

Two important concepts were introduced in this chapter. The first is that URLs in web applications
don’t have to address physical documents or scripts on your web server’s file system. Instead, they can
address virtual objects within your web application, such as /users/ted/photos/12. Routing makes this
new way to use URLs possible and allows your URL route specification to serve as your API interface
description.

The second important idea presented in this chapter is the belief that API development and web develop-
ment do not have to be independent pursuits. This chapter showed a line of thinking quite the opposite —
that your entire web application presents a single collection of functionality, and that functionality may

be addressed in a number of different formats. Development of your API and development of your web
site are really the same task with two different return types.

The next chapter discusses REST-based design, an architectural style that many feel to be the ultimate
goal that web applications should strive toward. REST-based web sites describe themselves entirely in
terms of resources that are accessed over the web via CRUD operations, and these CRUD operations are
specified using HTTP commands.

113

Resources and REST

“COM! NET! ORG! We represent much more! COM! NET! ORG! We represent much more!”” The

chanting grew louder as Web neared the square. A stage was set up right in the center, and an empty

podium waited for the gathering’s speakers to begin their addresses. Web could feel the buzz that per-

meates the senses whenever people assemble in a herd — the echoing chants, the waving signs, motion,
aspiration, all in unison.

Up near the square, the composition of the crowd was more diverse — not just URLs but protocols,
interpreters, libraries — everyone gathered to support the URLs. A few technicians appeared on the
stage and began tinkering with the microphone.

“Testing, testing,”” a skinny URL tapped on the microphone, his voice cracking. “Looks like we’ll be
multicasting today, ahiehaha!” he said to cheering crowds.

These guys just don’t quit, Web thought to himself, shaking his head. But why am I here? Who am I
supposed to meet?

And then Web caught her eye, up near the stage but off to the side where the crowd was sparse — a
woman with the unmistakable look of someone who was above the fray. She held a walkie-talkie in her
hand and stood with three others in deep conversation.

The woman said something and the other three turned and looked at Web.

Are you ... ? Web mouthed from across the square, not knowing what else to say but remembering what
he had been told back at the compound.

Just show up and stay alert. Everything else will take care of itself.

Yes, the woman mouthed back, nodding her head. One of the men to her left waved his arm and beckoned
for Web to come over. Web began making his way across the street.

“You must be Web! We've been waiting for you!” the woman greeted him as he neared. “’I'm Jen. Rusty
told us to keep an eye out for you.”” She shook Web’s hand. *’And these are my colleagues, helping me
keep things in order for the events today.”

“It's a pleasure,” Web said, “’but I have to be honest; I'm not exactly sure what part I play.”

Chapter 6: Resources and REST

“Don’t you worry, everything has its place — that will soon be apparent if nothing else. I'm terri-
bly sorry but right now I have to run. You wouldn’t believe the mess that’s just happened with the
water truck. Someone gave the driver a private IP address to deliver to and he never made it out of the
warehouse parking lot. Anyway, I'm supposed to give you this.”

She handed Web a business card. On one side was his own name embossed in black ink, and on the other
side was a map leading several blocks away from the main square to some place named The Underground.

“It’s a restaurant,” Jen continued. "“We go there whenever an event is in town. Be there an hour after
the crowd dissipates, and the rest of us will come meet you. It will be a much better place for talking.”

“Jen! The URLs say they broke the mic! Where did you put the backups?”” A man with a clipboard
shouted from the corner of the stage.

““Hold on!”" Jen rolled her eyes and gave Web a reluctant look, hoping to end the conversation.
“It’s okay,” Web said. "’Go ahead. I'm looking forward to listening to the speakers, anyway.”

“Thank you. I'll see you later on!”” She turned, alternating shouted instructions between her walkie-talkie
and the stage hand, and disappeared behind the platform.

Web stayed where he was — he preferred the sidelines where there was room to move — and watched the
crowd mill about before the speaking began. He had found the people he was supposed to meet, but the
question still lingered in his mind. Why am I here?

Representational State Transfer, or REST, is a design style that leads to truly “web native” applications
that take advantage of the characteristics of the HTTP protocol and resource-oriented programming.
RESTful development affects all aspects of your web application right from the start. At the design stage,
REST provides guidelines that help you determine how to model your controllers and user-facing objects.
During the implementation stage, REST allows you to take advantage of standardized resource opera-
tions provided by HTTP. And after your application is deployed, it makes you part of the REST-based
web services community with little-to-no extra effort on your part.

To many web developers, REST is an architectural style for the web in the same way and with the same
importance that MVC is an architectural style for application code. Both offer a systematic way to orga-
nize code, both provide a standard and predictable control flow between components, and both do so
using the tools that you already have in front of you. The first half of this chapter explores the design
style and implications of REST, and the second half shows how to use Rails to publish and consume
RESTful resources.

A Web of Resources

RESTful design is, like the emerging Semantic Web, fundamentally grounded in the idea of resources and
resource identifiers. A resource is a conceptual object, something that exists as an idea in our minds and
that can be talked about — for example, your pair of ripped blue jeans, the Yahoo! search engine, choco-
late cake, or the New York Times’ front page from January 20, 2008. Resources exist only in concept-space,
not in the physical world and not on disk, but there are three things you can do with them:

0 Name a resource

Q Talk about a resource

O Represent a resource

116

Chapter 6: Resources and REST

I discuss each of these three capabilities shortly, but to clarify, I offer a brief example first. Say that I
created a resource to represent my old Ford Explorer — not the physical object in my driveway but the
concept of that object. I can name this resource http: //edwardbenson. com/95fordso that I can talk about
it. When I tell friends that http://edwardbenson. com/95ford broke down, they know with certainty
exactly which concept I am referring to. That resource can also be represented in several different ways
in the real world. When I drive to work in the morning, I am using the physical representation of that
resource. If I look at a photo of my car, I am looking at a graphical representation of that resource. When
my transmission blew, the auto repair shop used their computers to pull up a repair-history representa-
tion of that resource. These are three different physical representations of the same conceptual entity, the
resource. This explanation might seem a bit too philosophical for web development, but it is vital to both
REST and the decentralized information system that the World Wide Web is beginning to represent.

Identifying Resources

Resources need identifiers in order for you to talk about them. A Universal Resource Identifier (URI)
provides this capability. A URI looks just like a URL, but it addresses an idea in concept-space rather
than a document on a physical server on the Internet. Of course, many URIs do in fact resolve to locations
on the Internet, and when they do, they can also be called by the more commonplace name, Uniform
Resource Locators (URLs).

The construction of URIs forms a global namespace that guarantees syntactic uniformity and encourages
uniqueness. In the web-resolvable world of URLSs, you make names in this namespace grow in specificity
from left to right by separating segments of the URI using the forward-slash character. This means that
anyone in the world can create an infinite number of unique resource identifiers as long as he or she
acquires a prefix in the namespace to call his or her own.

The URL of the web site http: //www.artofrails.com/ can be used as such a prefix. Building off of this
prefix, I can create URIs that stand for each chapter of this book:

http://www.artofrails.com/chapters/1
http://www.artofrails.com/chapters/2
http://www.artofrails.com/chapters/13

Remember that these are really URIs, so they stand for conceptual objects rather than web pages. If you
try to follow these links, you will find that the first two return web pages, but the third link results in
an HTTP 404 error. A web page for Chapter 13 does not exist, nor does a chapter by that number in this
book, but as long as the URI exists, then so does some conceptual idea that it stands for, even if there is
no available information about that idea in the resolvable world.

Talking About Resources

Because resource IDs are supposed to be unique, URIs serve as the iiber primary keys. The partitioning
scheme for domain names in the real world helps URLs make this a reality. In a one-table, two-column
database that covers the entire universe and maps primary keys to concepts, the URI is that primary key.
With a primary key, you can unambiguously refer to a conceptual object in any medium and in any place:
in an HREF property, in an XML file, in a letter to a friend, or in neon spray paint underneath a bridge.

In traditional CGl-oriented programming, objects and their references are kept internal to the sys-
tem; they are primary keys in a database that are unavailable to the outside world. Recall from the

117

Chapter 6: Resources and REST

previous chapter that the predominant style of web applications a few years ago was to use URLs to
address application features and to pass object IDs in as URL-encoded parameters to those features.
Resource-oriented programming inverts this style completely and uses URLs to represent the resources
contained within the system — the nouns — and makes the specification of actions to be performed on
those resources secondary. This inversion transforms what would be internal objects into externally avail-
able resources with URLSs to name them; third-party web sites are then able to externally reference and
talk about them.

Representing Resources

Though grabbing hold of the actual “stuff” of a resource is impossible because it exists in the concep-
tual realm, you can create representations of a resource in various formats. The resource http: //www
.artofrails.com/chapters/6 might represent Chapter 6 of this book. You are reading an instance of
the print representation of that particular resource right now. If you type that URI into a browser, you
will get back an HTML representation that summarizes it — the HTML representation. Still further,
typing that URI into a book-on-tape server might return an audio version of the chapter. Each of these
representations — the print, the web page, and the audio — are independent of the URI because they are
all different ways to represent the concept that the URI stands for.

Even when limiting yourself to just web development, this means that you should not treat resource
URIs as web pages but rather as resolvable endpoints at which you provide various representations of
the resource when asked. (From an implementation standpoint, this should be starting to sound sus-
piciously like an APL) A financial report may be available as a spreadsheet, a PDF, a web page, or a
GIF image, but all these formats are just different representations available from the same resource URI.
Which particular representation is returned when that URI is presented to the server depends on the
metadata of the resource representation request. This metadata is provided just as it was for the APIs of
Chapter 5 — a combination of HTTP headers and the : format route variable — and you can make deci-
sions about which resource representation to use with the respond_to method in your controllers.

This also means that resources are not the model instances tucked away in your database. Web develop-
ment is primarily database centric, so the resources you represent on your web site likely have a 1-to-1
correspondence with model instances, but this isn’t always the case. Really, your database (and the
model objects that represent it) just provides your MVC application the data it needs to prepare resource
representations for the outside world.

Representational State Transfer

Representational State Transfer (REST) describes an application architecture based on the idea that the
Web is best modeled as a large collection of resources. From the REST perspective, web applications are
programs that observe and modify the states of those resources. REST provides a way to design and
structure your web applications; it is an idea about how to use existing technologies instead of being

a particular technology itself. Its proponents argue that its deep integration with resources, URIs, and
HTTP is evidence that it represents the optimal architecture for the evolving discipline of web application
development.

The term “REST” was defined in 2000 by Roy Fielding as the focus of his doctoral dissertation. Fielding
was one of the creators of the HTTP protocol and a co-founder of the Apache HTTP Server, and, in many
ways, REST completes and builds on his two previous accomplishments. HTTP defines a mechanism
for transferring information with a remote server, and Apache implemented that mechanism to make it

118

Chapter 6: Resources and REST

widely available to all. REST extends the power of these tools by defining a software architecture on top
of those accomplishments that standardizes the practice of web-based application development. In the
“REST and Rails” section of this chapter, you will see how Ruby on Rails provides an implementation of
REST ideas that makes it easy for developers to incorporate it into their code.

Since its explosion as a buzzword, the term REST has been thrown around to mean just about any-
thing with an HTTP-accessible APIL Here is this book’s attempt to boil down what REST really means as
concisely as possible.

RESTful resources

0 Are abstract notions identified by URIs
Q Have URIs that are also URLs resolvable on the Web

Q Can be represented in multiple content formats
RESTful applications

O Are defined in terms of RESTful resources
Q Provide the same basic set of operations for all resources

0O Communicate with the outside world in terms of resources and operations on those resources

The point of roping these features together and giving them a name is not just that it is one possible way
to develop but that these characteristics result in a distributed application environment that is proven to
thrive online, in scalability, in ease of development, and in interoperability.

You already have a handle on what RESTful resource requirements mean: They are just resources whose
URISs also double as URLs that provide access to their web-available representations. The following
sections dig into each of the characteristics of RESTful applications in more depth.

HTTP: The Resource CRUD

The first characteristic in the preceding definition of RESTful applications is that all RESTful applications
provide the same basic set of operations for resources. These operations are the same operations that
apply to any piece of data, and the same ones you have already seen in previous chapters: Create, Read,
Update, and Delete (CRUD). Despite the fact that, deep down, you know that resources are conceptual
in nature, it sometimes helps to think of them as objects on a bookshelf. The CRUD actions give you
everything you need to manage that bookshelf, which means that the object representations on the shelf
can remain declarative, much more similar to C structs than to C++ classes. Given this, you know that
the resource itself does not perform actions but rather that actions are performed on the resource.

Back in the early days of HTTP, these CRUD operations were supported natively, because the Web
was seen as a distributed document management system. Naturally, documents could be created, read,
updated, or deleted, so HTTP provided commands to accomplish these operations. As HTML documents
became read-only user interface (UI) specifications (form inputs do not change the web document itself,
but are passed along as arguments with the next request), these commands lost their original semantic
meaning and blurred, with some falling out of use and others being given new uses. RESTful develop-
ment restores some of the semantic meaning to HTTP verbs by defining a universal CRUD interface.
Fielding, et al., gives the verb definitions, shown in the following table, in the HTTP 1.1 specification.

119

Chapter 6: Resources and REST

HTTP Verb Specification Excerpt

GET Retrieves whatever information (in the form of an entity) is identified by the
Request-URI

POST Requests that the origin server accept the entity enclosed in the request as a new
subordinate of the resource identified by the Request-URI

PUT Requests that the enclosed entity be stored under the supplied Request-URI

DELETE Requests that the origin server delete the resource identified by the Request-URI

These definitions essentially state that specifying all the CRUD operations using the HTTP command that
accompanies a web request is possible, eliminating the need to have phrases such as create, edit, and
show in the URL. Using special URIs to stand for each of these operations amounts to reimplementing

a feature in your application that already existed at a much lower level. RESTful development suggests
that developers return to using HTTP commands to specify the CRUD operation to be performed and
to standardize on these commands as the common set of operations available for all resources contained
within a web application.

Standardization is where REST gets tricky because the definitions in the table do not map the HTTP verbs
in a 1-to-1 fashion with CRUD operations, and this is part of the reason the term REST is thrown about so
loosely. (Another reason is that the PUT and DELETE commands pose a bit of a problem — more on that
later in ““Backward Compatibility Workaround.”) The next table defines the HTTP-to-CRUD mapping
that Ruby on Rails development employs. This table should not be interpreted as an official standard, but
it is one widely used, and it is the default for all RESTful routing in Rails.

CRUD Operation HTTP Verb Endpoint Backward Compatibility Workaround
Create POST Class n/a
Read GET Class, n/a
Resource
Update PUT Resource POST with _method = put
Delete DELETE Resource POST with _method = delete

This table shows that Ruby on Rails narrows down the possible behaviors in the HTTP 1.1 specification
to create an unambiguous one-to-one mapping between HTTP verbs and CRUD operations on the server.
In doing this, client requests to RESTful Rails applications are no longer directed at controller actions but
instead are directed at the resources themselves. The verb on the HTTP request dictates the particular
CRUD operation the user wishes to perform on that resource, and the parameters and metadata that
accompany the request provide the remaining information required for the operation to complete.

RESTful Endpoints

The REST mapping defined by Rails also pares down the flexibility of HTTP 1.1 in its handling of resource
creation. The HTTP specification allows users to generate new resources on the server by sending data to
the URI the user would like to use to represent the new resource. On seeing that the URI is unoccupied

120

Chapter 6: Resources and REST

by a resource, the server creates a new resource at that endpoint. Out on the Web and in the wild, this
gives the user too much control over the workings of the web application and its URL namespace, and it
also complicates the ability to efficiently store data in databases using auto-generated identifiers.

As an alternative to this flexibility, Rails maintains the notion of two different endpoints for each RESTful
resource:

Q The class-level endpoint, or plural endpoint, which represents both the resource’s type and the col-
lection of all resources of that type on the server

Q The instance-level endpoint, or singular endpoint, which represents a particular resource instance of
a certain type

Class-level endpoints look like the following:

/users
/books
/photos

Instance-level endpoints append an instance-specific identifier to the end of the class-level endpoint:

/users/23
/books/the-art-of-rails
/photos/2

The semantics of the REST operation then depends on whether the endpoint being addressed is class
level or instance level.

Class-level endpoints support two types of requests: POST and GET. A POST request causes a new resource
to be created. After creating the resource, the web application server returns a 201 (Created) status code
along with the URI of the newly created resource in the Location header. This keeps the control of URI
creation within the application. When a GET request is sent to a class-level endpoint, it is interpreted as
a request for the entire collection of resources of that type. This is normally interpreted as a listing of
resources and their URIs at which more information can be found, so /photos might return a list of all
photos on the site and their thumbnail images.

Instance-level endpoints support only Read, Update, and Delete operations, and those behave as you
would expect them to.

Backward Compatibility Workaround

Because HTTP verbs lost much of their use and original meaning during a period of atrophy, some
browsers do not support the creation of PUT and DELETE requests. To ensure backward compatibility of
REST operations in these environments, Ruby on Rails automatically supports a workaround that you
rarely need to think about because it occurs on both the client- and server-side automatically when using
REST with Rails.

For both pUT and DELETE resource operations, Rails inserts client-side code to transform the request into a

POST with a special variable _method that contains the name of the HTTP verb that was actually intended:
either put or delete. The Rails server automatically looks for POST requests with this _method variable

121

Chapter 6: Resources and REST

set and will treat the request as though it had occurred with the enclosed HTTP verb. By allowing Rails
to implement this workaround behind the scenes for you, you are still able to develop RESTfully, and the
workout can easily be removed in the future if PUT and DELETE return as universally supported HTTP
commands.

Defining an Application in Terms of Resources

RESTful applications are defined in terms of resource operations using the universal set of CRUD com-
mands that HTTP provides. Designing an application in this way leads to a particular flavor of web
development different from those that you would design otherwise. The whole application is defined in
terms of resources rather than services or API calls, placing the focus on nouns rather than verbs.

The term “resource” immediately makes most people think of model development, but, surprisingly, the
primary area of resource-based application development is in your controllers. REST design is all about
controllers because REST and resources are topics concerned with how your application looks to the
outside world, whereas model objects are internal entities concerned with how your database looks to
your application logic.

In previous chapters, I characterized controllers as groupings of related actions in your web application,
but in RESTful applications, these actions are very specifically defined. I define the term resource controller
to mean a controller whose purpose is to provide RESTful operations for a particular type of resource.

RESTful Routing: Mapping HTTP Commands into the Controller

Chapter 5, “Beautiful Web APIs,” described the importance of URL routing to enable URLs that reference
concepts rather than executable scripts. With REST, the concept-space is further constrained: As much as
possible, URLs should represent nouns, the resources, rather than actions. (You will learn how to deal
with non-CRUD actions in the “REST and Rails”’ section.) For this to be reality, the concept of routing
needs to extend past the URL and into the entire HTTP request.

RESTful routing uses the combination of URL route templates plus knowledge of the HTTP command
used to make the request. These two factors together determine which CRUD action the request will
map to. On the controller side, the Rails CRUD actions are implemented in the same way as described
in Chapter 4, “Getting the Most from M, V, and C.” So a resource controller looks exactly the same as the
CRUD controllers from Chapter 4. The big difference is the URL used to reach that controller action.
More Ruby on Rails—specific discussion of RESTful routing is provided in the second half of the chapter,
which addresses the Rails REST APIL For now, you need only to know that this new RESTful resource
interaction style is mapped automatically into CRUD controllers as you are used to seeing them.

Resources Lead to Simple Endpoints

Limiting your controller development as much as possible to only resource controllers is both a constraint
and a tool. It limits you to designing the public face of your application as entirely noun based, but it also
serves as a great organizational guide. API development is time consuming on any project, and the
implicit API created by a Rails controller and its actions is no different. With REST-based development,
controllers take on a different feel, and the pathways into your application start to look a lot simpler.

122

Chapter 6: Resources and REST

CRUD operations all collapse into just two endpoints, the class-level endpoint and the resource-level
endpoint. Rather than use different URLs to differentiate between them, you use the HTTP verb, as
shown in the following table.

Non-REST CRUD Endpoints REST CRUD Endpoints
/users/create # POST /users # POST
/users/23/show # GET /users/23 # GET
/users/23/update # POST /users/23 # PUT
/users/23/destroy # POST /users/23 # DELETE

And non-CRUD operations are often refactored into resources that can be operated upon with CRUD.
Rather than close an account, you create an account closure. Rather than log in, you create a new
session. Rather than log out, you delete that session. By changing the way these verb-like actions are
described so that they become nouns, you make them compatible with a resource-centric application
design. Some example refactorings are shown in the following table.

Non REST Operations REST Operations
/account/23/close # POST /account_closure # POST
/login # POST /session # POST

/logout # POST /session # DELETE
/recipe/44/rate # POST /rating # POST

In fact, having to decide which actions to add to a controller becomes the exception rather than the
rule. Because your application strives to be defined entirely in terms of resources, and because resource
controllers must all support standard CRUD operations, only the few remaining features that could not fit
into the REST paradigm require that you implement an action outside the CRUD paradigm. The difficult
part, then, becomes determining what resources make up your “public model” that is used to represent
the functionality of your site.

One way to determine these resources is to think about the model objects that you will use to persist your
data. Even though resources do not necessarily map onto your model objects, your model objects provide
a good guess about the resources you will likely need.

An Example of REST-Based Refactoring

To further demonstrate how REST-based application design differs from what you might design without
REST, I revisit the design of the hypothetical web site for cooking enthusiasts from Chapter 3, ““The Server
as an Application.” That design contained the controllers and models shown in the following table.

123

Chapter 6: Resources and REST

Controller Model
AccountController User
UserController Profile
FavoritesController Recipe
RecipeController Photo
Ingredient
Rating
Comment
Favorite

This design rolled a lot of functionality into four basic controllers that provided access to account creation
and login, recipe viewing, and “favorite” management.

Revisiting this design with RESTful principles in mind, two main problems are apparent:

QO The AccountController is oddly crafted from the REST standpoint because it handles new user
creation, sign-in, and sign-out. The first responsibility should really be a create operation on
a User resource. The latter two operations are verbs, which should somehow be refactored into
nouns.

O The User, Recipe, and Favorites controllers appear to have too much functionality wrapped
into them, because they are encapsulating operations on many different types of objects that
could instead be modeled as resources.

You can tackle the AccountController first. You can remove the user creation responsibilities from it
because they should be handled by the HTTP CRUD operations of REST. Doing so implies that you
will need a User resource type. That leaves sign-in and sign-out. To handle that, you will remove the
AccountController completely and replace it with a Session resource type that represents a user’s
current session with the web site. Signing into the site will be the creation of a new session, and signing
out of the site will be the deletion of that session.

Resources so far: User, Session

Next, look at the UserController. This controller encapsulates both the user and that user’s profile.

At this point, you must make a decision: Either have the User resource represent both the account mem-
bership and the user profile, or have separate resources for user and profile. Because each user has only
one profile, and because the spirit of a profile is to represent a user, the best decision is to include a user’s
profile information within the User resource.

Resources so far: User, Session (same as before)

124

Chapter 6: Resources and REST

Next is the RecipeController, which managed the interactions between several types of objects: recipes,
ingredients, recipe photos, ratings, and comments. A lot of work needs to be done here:

0 Recipe will become a resource type — an easy decision.

Q The fact that you have chosen to model ingredients in a separate table in the database and asso-
ciate them with recipes indicates that you may have bigger plans for recipe lookup down the
road. Therefore, investing in an Ingredient resource now makes sense so that external users will
have some way of interacting with the ingredient resources you maintain information about.

0 Each recipe model object also contains an optional photo. Because this photo is meant only
to provide an auxiliary way to view the recipe, you will include the photo with the Recipe
resource type as a potential data format. In the HTML version of a Recipe object, the photo will
be included with the text, and just the photo alone will be offered if the image/gif, image/jpeg,
or image/png MIME type is requested with the recipe’s URI.

0 Rating will also be split off as its own resource type, and you will add extra functionality within
its resource controller to include any additional summation or averaging needed.

0O comment will also become a resource type — another easy decision.

Resources so far: User, Session, Recipe, Ingredient, Rating, Comment

Finally, you refactor the FavoritesController that allowed users to record their favorite items on the
site. This will become the Favorite resource type.

Resources so far: User, Session, Recipe, Ingredient, Rating, Comment, Favorite

Finishing the high-level REST refactoring, you have a much different application design on your hands.
The following table is the new RESTful version of your earlier table. Instead of controllers, it shows
resource types, each of which has its own resource controller to manage the CRUD operations for
that resource type.

Resource Type Model
User User
Session Profile
Recipe Recipe
Ingredient Photo
Rating Ingredient
Comment Rating
Favorite Comment
Favorite

125

Chapter 6: Resources and REST

Figure 6-1 presents this new design in a different way, showing the mapping of model objects onto
resources. The model objects represent the application domain as beneficial for database modeling, and
the resources represent the application domain as beneficial to the user of the application.

Model

Resource Type
User

Session —
y / Profile
L

User
Recipe
Recipe —
Photo
Ingredient)
Ingredient
Rating D
1 Rating
Comment \
1 Comment
Favorite —
Favorite
Figure 6-1

In some ways, this new design results in more code; that is, for each resource type, there must be a
resource controller, so the new design contains seven controllers whereas the old design contained only
four. Despite requiring more code, this new design, when implemented, will be simpler, easier to main-
tain, and easier to understand than the prior design. Because the application is now defined entirely in
terms of resources, nearly all the implementation required on each controller is limited to REST-style
CRUD operations. Because REST dictates that these operations are the same across all resources, a com-
mon implementation could even be extracted into a base class if you desired (though this is not common
because it obfuscates the workings of the resource controllers).

Communicating with the Client: Resources as Your API

The mandate that all RESTful resources be accessible by the same standard set of operations simplifies
both API development and API use. Your web application API becomes the set of resource endpoints,
and HTTP-based REST operations become the method calls into that API. Because these method calls
are nearly the same across all REST-based web applications, the real API documentation becomes what
resources you provide and what data fields exist on those resources.

From the standpoint of development, transforming a RESTful application into a RESTful API simply
requires you to support additional response formats in your resource controllers, whether those formats
be XML, RDF, CSV, or some custom format. As you will see later in this chapter when the Rails REST
is explained, issues such as authentication and API metering can still be accomplished via filters on the
resource controller’s operations.

From the standpoint of an API user, a RESTful API offers a simple way to connect to a service and use its
features without all the proxies and configuration required of SOAP web services. Because REST services

126

Chapter 6: Resources and REST

are usually exposed with an XML view of the resources they support, the only tools necessary are an
XML parser and an HTTP library.

Put Another Way: The Network Is the Computer

RESTful applications present resources to the outside world the same way your model objects present
relational database metaphors to your MVC application. In this respect, you can think of one of the
goals of REST as designing a public interface for your application’s functionality that is just as disci-
plined and object focused as the interface that the model layer constructs around a database. RESTful
applications become resource servers layered on top of the MVC application that makes resource man-
agement and display possible. For most users, the resources are served as HTML pages of content — user
profiles, recipes, and so on — but increasingly, these resource servers provide yet another layer of
data abstraction and specialization enabling the creation of intersite applications. Figure 6-2 illustrates
this trend.

4 RESTful Server h
Resource Request Controller (<> Model
Resource
View
Format: HTML
NG J/

Figure 6-2

For many years, “The Network Is the Computer’”” was one of Sun’s catch phrases. It meant that com-
puting, and for your purposes application development, had ceased to be something that took place on
a single processor and had become a distributed, heterogeneous process that spanned entire networks.
The Internet is now a global ecosystem in which applications can mingle among each other and inter-
operate. REST-based development establishes a basic set of rules for application design and interaction
in that ecosystem so that all applications can speak with each other through the exchange of resource
representations.

RESTful resources and model objects both seek to provide abstractions for objects that are important to
your application. Because the operations on RESTful resources look similar to the same basic operations
that you would use on your model objects, REST allows you to begin replacing management of your own
model objects with resources that are managed elsewhere by third parties.

This approach to management represents an entirely new type of emerging network development,
depicted in Figure 6-3 — super-mash-ups, if you will. Tumblr, a host of the self-coined ““tumblelog”
type of blogs, provides free, reliable blogging services. Flickr will hold your photos for you. Facebook
manages social networks and status updates. And Disqus hosts embeddable comment boards for use on
your site. Apart, each one of these services specializes in its own particular niche of web-enabled func-
tionality, but together they can be woven to form a blog whose every component is managed elsewhere
on the web.

127

Chapter 6:

Resources and REST

Tumblr
Blog / Tumblelog Repository

C > M

!

\

http://tumblr.com/

resource
transfer

resource
transfer

Facebook
Social Network Repository

C <> M

http:/facebook.com/

resource
transfer

Your Site

resource
transfer

Flickr
Photo Repository

Disqus
Comment Repository

C <> M C
' '

v

<> M

http://flickr.com/
Figure 6-3

http:/disqus.com/

Together on the Internet, services such as Tumblr, Flickr, Disqus, and Facebook are forming the initial
components of Sun’s dream of network computing for the masses, arriving a bit late and in a slightly
different form than expected. These services do not use REST in the purist sense discussed in this chapter,
but that is beside the point because REST-based APIs only increase the flexibility with which services such
as these can be rehashed and recombined. Whereas the computing industry’s bet on Web Services largely
did not prove fruitful outside of a few small cases, REST is emerging as a way for every web application
to join the fray and offer resources for consumption in the same spirit as the aforementioned ones.

REST and Rails

The first half of this chapter explained the concepts behind REST-based application development; the
remainder demonstrates how Ruby on Rails provides support for using this application architecture in
your code. Much of the philosophy behind REST jives very well with the Rails notion of ““Don’t Repeat
Yourself” (DRY), because it is concerned with devising a universal set of rules and operations for all
resources and declaring that your application be written entirely in terms of these generic resources.
Opportunities for Rails-style automation are abundant, and you will see how Rails routing and gener-
ators take advantage of this homogenous environment to minimize the amount of code that you must
write yourself.

Ruby on Rails provides facilities to support and even automate REST-based resource interaction with
your web application’s clients. In contrast to some of the other core design-oriented features of Rails
(such as MVC), REST support is added on top of the framework rather than mandated throughout.
Therefore, development of the MVC portions of your application largely carries on as it normally would.

128

Chapter 6: Resources and REST

The RESTful resource handling comes in the router, where certain routes are declared to be resource
centric and can be mapped to the CRUD operations of a controller. This manner of implementing REST
enables you to use REST for as much of your application design as makes sense but still retain the tradi-
tional controller-action paradigm that drove Rails development prior to REST.

Mapping Resources in the Router

The heart of Rails” REST support is in the router that accepts incoming requests and hands them off to
controllers to fulfill. As far as code that the developer typically manages is concerned, the router is the
first component in which your application gets to decide how to respond. Before REST-based support
was added, the router allowed for two different types of routes.

QO Anonymous routes: Routes in which a routing template is anonymously mapped to a particular
configuration of controller, action, and parameters

QO Named routes: Routes that are given an explicit name and an automatically generated set of
helper methods that output URIs that match the route; they usually cover a narrower collection
of possible URIs than anonymous routes.

Rails version 1.2 and on contain a third type of route, the resources route, which automatically sets up
RESTful operations in one fell swoop.

For example, the line

map.resources : cards

automatically sets up a number of named routes, each matching REST operations for the resource type
named card to CRUD actions on a controller that are expected to fulfill the intent of the REST operations.
Figure 6-4 depicts this mapping between the REST and CRUD operations that you are already familiar
with because of the card example. By default in this example, the router assumes that the controller
providing REST operations for the class-level endpoint and the instance-level endpoint is called the
CardsController, because the resource type is card.

Resources Controllers and Actions
The Implementation

The Public Face

CLIENT

SERVER

CRUD Controller
Create POST create

GET

Read show

Update update

Delete destroy

REST-Aware !
Routing

Figure 6-4

129

Chapter 6: Resources and REST

With an empty routes.rb file containing only that resource route definition, the traditional controller-
and action-oriented URIs that you are accustomed to with Rails, such as /cards/list or /cards/show/1,
will no longer work. Instead, only RESTful requests to /cards and /cards/:ID will result in responses,
provided by the CRUD/resource-enabled CardsController.

As with many aspects of Rails, the map.routes command assumes the most common values for all

its options by default but offers a wide degree of configurable behavior. Many of the key design-
oriented options are covered in this chapter, but you should view the whole list on the Rails API Docu-
mentation site at http://api.rubyonrails.org/classes/ActionController/Resources.html.

But It’s the Real World: Named Routes are Still Needed

Recall from Chapter 4, however, that some operations just can’t take place in one step when a human
is in the loop. These two-step actions, such as new- > create and edit- > update, require a setup step
(new and edit), in which the user is presented with some form for entry, and a processing step (create
and update), in which the user data is committed to the database. Web applications designed around the
notion of resources and REST operations are no different.

In practice, RESTful web applications are almost always implemented with a few extra controller actions
to make up for the user interface requirements of a web site that REST alone cannot easily encompass.
Figure 6-5 shows the Rails router mapping RESTful routes as well as the helper routes for two-step
actions using the same card example.

Resources Controllers and Actions
The Implementation

The Public Face

CLIENT SERVER

CRUD Controller

.
Create —_— create
Read show
Update update
Delete Controller-Action destroy
Routing
New
Edit
Figure 6-5

The new and edit routes are so important to the functioning of CRUD operations when in HTML mode
that the map.resources command automatically generates them for you and wires them to the new
and edit methods on your resource controller. The inclusion of these extra helper actions is more of an

130

Chapter 6: Resources and REST

HTML-specific fact of life than it is a cheat. It does not hurt the overall design of your application, but
it helps the application’s usability in HTML enormously. Trying to implement these two-step actions
as resources themselves would surely be far more trouble than it’s worth. This is largely because views
such as new and edit are not resource representations themselves but rather helper forms used to let the
HTML user provide his or her own representation.

Still, to maximize your application’s leverage of REST, keep these custom actions to a minimum when
possible. One strategy many Rails developers have cited is the following:

When developing REST-based applications, stick to resource routes and
named routes.

This strategy means that you should eliminate any anonymous wildcard routes you have in your routes
.rb file, including the beloved default route:

map.connect ':controller/:action/:id'

Instead, enter only named routes:

map.home '/', :controller => 'home', :action => 'index'
map.about '/about', :controller => 'home', :action => 'about'

This forces you to explicitly craft the parts of your API that exist outside of the standard REST operations.

Automatically Provided Routes

All in all, running the map.resources method creates seven routes from HTTP endpoints into your
resource controller. These hooks are the six shown in Figure 6-5, plus an additional GET request available
at the class-level endpoint for listing resources or providing an index page. They are shown grouped by
endpoint in the following example:

Route HTTP Command Mapped Controller Action

[Resource-level Routes]

/resource_type GET index
/resource_type POST create

[Class-level Routes]

/resource_type/:ID GET show
/resource_type/:ID PUT update
/resource_type/:ID DELETE destroy

[Helper Routes]

/resource_type/new GET new
/resource_type/:ID/edit GET edit

131

Chapter 6: Resources and REST

Extra Route Shorthand

The route.resource method provides a shorthand for any other extra routes that you need, allowing
you to define them along with the RESTful route definition. This method of adding extra resource-related
routes is preferred over enumerating named routes manually because it provides a way to define them
in terms of either the class-level (singular) or resource-level (plural) endpoint of the resource.

Extra class-level routes can be added to a resource mapping via the :collection option.

map.resources :photos, :collection => ({
:popular => :get
:recent => :get
:finalize => :post

}

The value of the :collection option is a hash containing the extra route names to be added and the
HTTP method that should be paired with that route. If you would like to accept all HTTP methods for a
particular route, use the value :any. Each of the routes specified will be added as a class-level endpoint,
so the preceding command would result in the following valid routes, in addition to the RESTful routes
automatically defined:

Route To be used with
/photos/popular # GET
/photos/recent # GET

/photos/finalize # POST

To define extra routes at the resource level, add a set of route descriptions in the same way to the :member
option.

map.resources :photos, :member => {
:purchase => :any
:flag => :any
:download => :post

}

The :member option will define extra routes tied to a resource-level endpoint with a templated :id.

Route To be used with
/photos/:1id/purchase # Any command
/photos/:1d/flag # Any command

/photos/:id/download # POST

Rails creates helper methods for each of the routes added using the :collection and :member options.
These helper methods help you generate URLs to match the routes without having to hand-code them.

download_photo_path(23) #=> /photos/23/download

132

Chapter 6: Resources and REST

Adding extra routes to an otherwise RESTful application in this way is a good alternative because it
groups the named routes with the resource definition. It also guarantees that you add them in a manner
that conforms to a resource-oriented set of application endpoints, even if they are not standard REST
operations.

REST and URL Helpers

Some developers choose not to use the URL helpers that the Rails router creates for you because they
feel that these extra method calls can add critical milliseconds to your web application’s response time
for little benefit. (I am certainly one of those developers.) However, with RESTful routes and resources,
it is important to use the named route helpers that Rails provides. Recall that many browsers encounter
problems with the PUT and DELETE requests that REST uses for edit and delete CRUD operations. Rails
automatically provides the hidden _method variable workaround for such situations, but it does so from
within these helpers. When a link you are creating is intended either to modify or delete a resource,
remember to use a route helper method to ensure that the backward-compatibility fix gets added so that
it will work with all browsers!

Resource Scaffolds

Scaffolding is a troubled memory for many die-hard Rails developers because it began as an example-
providing feature that was interpreted (and then ridiculed) as a substitute for thoughtful, hand-crafted
implementation. But scaffolding is back with a vengeance, this time with resources, and it provides a
great way to look at the bare-bones implementation of how a fully functional resource controller should
behave. If you are developing a production application or practicing test-driven development, it is best
to start from scratch and build up your CRUD methods by hand. For early development and REST
experimentation, however, you can’t beat scaffolding for learning the ropes.

To create a scaffolded resource, simply type the following on the command line. By default, it will create
a regular resource (rather than a singleton):

script/generate scaffold resource_name

This command generates a reference implementation for all the files that you need to observe how a basic
model-backed resource operates, from the migrations and model objects to the resource controller and
the resource route. It even marks up the auto-generated controller with comments that explain how each
of the CRUD actions is mapped onto various HTTP requests.

If you have yet to experiment with REST and Rails, go to a computer with a current copy of Rails and try
the new scaffolding right now to kick the tires before continuing.

Nested Resources

In some cases, representing resources as nested, subordinate to other resources, is advantageous to the
design of your application. Comments on a blog post, photos for a recipe, or books by an author are

133

Chapter 6: Resources and REST

all examples of resources that you can potentially model as subordinate objects rather than top-level
ones. Nesting allows them to be represented as such to the user: /article/123/comments/3 rather than
comments /4423, for example.

Nesting is almost always an added feature and never a required one. Because resources are generally
serialized to a database, they each have unique identifiers that allow them to be accessed as top-level
objects subordinate to none. But nesting offers some nice benefits when you use it in the right places:

Q Intuitive resource URIs: Such as /article/123/comments/3 shown previously.

0 The ability to localize public identifiers to a particular scope: In the comment example, the
/comments/3 references the third comment in the ordered list of comments made about Article
123. This is a more intuitive way to identify subordinate items than using their absolute IDs; it
also provides a limited degree of protection against revealing the inner workings of your web
site (for example, if you did not want to make it easy to determine how many comments your
system contained).

O The automatic inclusion of required associated objects: Posting a new comment to the
/comments path requires the form to explicitly specify in the parameters what article the com-
ment concerns. This is unfortunate because the article ID is really a relationship between the
comment and the article rather than a property of the comment resource. By nesting the
resources, a new comment can be added to Article 123 by posting to /articles/123/comments.
Because the article ID is contained in the PoST URI, there is no need to include it in the parame-
ters of the comment to be added.

0 Easy, URI-enforced access control: Perhaps the most compelling feature of nesting is its ability
to let you easily control access to nested resources based on a user’s relationship to the con-
taining resource. If the web user has access to the top-level object, it makes sense that he or she
would also have access to the nested items. ActiveRecord associations allow you to even look up
objects within the context of an associated object, so a GET to /article/123/comments/3 could be
written as

Qarticle = Article.find(params[:article_id])
@comments = Qarticle.comments.find _by_position (params[:id])

QO With the lookup performed in this way, ActiveRecord prevents comments outside the scope of
the given article from even being considered for return.

Creating a Nested Route

To create a nested route, add a block to the end of your map. resources call and define any subordinate
resources within that block:

map.resources :articles do |articles|
Nested resources go here
end

The mapper is passed into the block configured for the nest-level, and that mapper should be used rather
than the top-level map.

134

Chapter 6: Resources and REST

map.resources :articles do |articles|
articles.resources :comments
end

Routes that are defined within a nested block result in named route methods that require two variables
to generate their route:

article_comment_path(@article, @comment)
article_comment_path(:article => Qarticle, :comment => @comment)

Deep Nesting

Nesting can go deeper than just one level, although the deeper you go, the more you lose the simplicity
of RESTful resource design amidst the resource associations and dependencies. Deep nesting looks the
same as regular nesting except that it has more nested blocks:

map.resources :bloggers do |bloggers|
bloggers.resources :articles do |articles]|
articles.resources :comments
end
end

That route definition would result in routes like the following;:

You will see how to interpret IDs flexibly like this in a few paragraphs
/bloggers/ted/articles/123/comments/2

The named route helpers that result are named by appending all the nestings together:

blogger_article_comments_path(:blogger => @Quser, :article => Qa)
blogger_article_comment_path(:blogger => @Quser, :article => @Qa, :comment => @c)

Writing a Nested Resource Controller

Nested routes are always directed to the resource controller for the innermost-nested resource. So the
nested route /bloggers/ted/articles/123/comments/2 would be directed to the CommentsController.
The Rails router parses segments of the URI into parameters to help the resource controller determine
the context of the request. These parameters are named with the singular variant of the resource name
followed by the suffix _id.

A GET request to the preceding three-deep nested route, then, would be equivalent to the following
request in a traditional controller-action style application setup. The parameters are shown in a comment
rather than in the URL for readability:

GET /bloggers/ted/articles/123/comments/2

is equivalent to

GET /comments/2 # params = { :blogger_id => 'ted',6 :article_id => 123 }

135

Chapter 6: Resources and REST

For a two-layer nest such as /articles/123/comments/2, the parameters hash simply leaves out the
blogger_id, as you can imagine:

GET /articles/123/comments/2

is equivalent to
GET /comments/2 # params = { :article_id => 123 }

Nesting a resource does not preclude you from also making it available at the top-level of your web
application; remember that these are just routes, so you can make multiple routes for the same resource.
A good example of how this might be useful is with the comment system. As a nested resource, com-
ments might be referenced by their relative ordering with regard to the article they were posted on. As a
top-level resource, another map . resources mapping might make comments available via their primary
key in the database.

This means that your resource controller must be aware of the way that you are constructing your
RESTful routes in the routes.rb file, and it is responsible for checking on the expected information
and responding appropriately to it.

Hiding Your Primary Keys

Sometimes web developers prefer to hide their primary key fields so that users and competitors have
less knowledge of the internals of the web application. Surfacing an auto-incremented ID to the users
would divulge how successful your site is in terms of user-generated content, and it might be in your
interest to keep your competitors guessing. Combined with the to_param method on ActiveRecord,
nested resources can be an effective way to hide your primary keys. For named objects, overload the
to_param method to return a URL-valid string representation of the name rather than the object ID.
For unnamed objects that are nested, you can use acts_as_1list with the ActiveRecord association and
overload to_param to return the position of the object in the associated list.

The preceding bloggers - > articles - > comments example is an example. If the Blogger model object
was modified to return the blogger’s name as the parameter as follows:

class Blogger < ActiveRecord::Base
def to_param
self.handle
end
end

and the article’s to_param method was modified to return the article’s title:

class Article < ActiveRecord::Base
def to_param
"#{name.gsub(/[*a-z0-9]+/1i, '=')}"
end
end

then you can override the comment’s to_param to return its position in the comment list relative to the
article it is attached to:

136

Chapter 6: Resources and REST

class Comment < ActiveRecord::Base
def to_param
self.position
end
end

The result is that you have successfully identified your resources to the outside world in a way that
obscures how many objects your system actually contains and in what order they were added. Rather
than be ID tied, URIs will look like this:

/bloggers/ted/articles/why-rest-is-super-cool/comments/2

Just remember that if you change a model object’s to_param method so that it is not equal to or prefixed
by its primary key, you will need to update the code in your resource controllers that locates those objects.

Singleton Resources versus Regular Resources

Although most of the resources you will be creating will use the map. resources method to wire their
RESTful routes, Rails also introduces the notion of singleton resources to manage those resources that
behave most like singletons in the programming sense. Singleton resources are those for which only one
resource exists, a situation that can occur for a few different reasons:

0O Ahas_one relationship in models mapped to nested resources: If a User has only one Profile,
the ideal way to access it is /user/ted/profile rather than /user/ted/profile/profile ID.

0 Only one instance of the resource exists in the application: If your web application contains
one and only one FAQ, that FAQ might be modeled as a singleton resource.

0 Only one instance of the resource exists relative to the user session: Each authenticated user is
associated with one and only one session. Although multiple sessions may exist for separate
users simultaneously, only one session per user should ever exist at a time. Singleton routes
allow the user to address his or her session as a singleton resource object.

0 Security reasons: Singleton routes that lead to session-scoped objects are a good way to pre-
vent users from being able to even address objects that belong to others. A singleton /session
resource or /account resource might be mapped at the controller level into the session or account
appropriate for that user. Because no primary key was ever exchanged, it is more difficult for
malicious users to access the information of others.

Using the singular REST route command, map . resource, works just the same as map.resources except
that it generates only the routes that make sense for a singleton resource, which means CRUD turns into
simply RU because only reading and updating a singleton make sense. All the generated method names
are also singular to reflect the nature of the resource.

As with nested routes, the burden is on the developer to ensure that singleton resources are handled
properly within their resource controllers. Designing resource routes in the routes.rb file is a critical
step in your application’s development, but the controllers that support that design must be aware of
the assumptions that are made during this step. This means that any singleton resources tied to a user’s

137

Chapter 6: Resources and REST

session, for instance, will not get any params [:1d] value and instead need to be automatically loaded by
their resource controllers.

Summary

This chapter covered a lot of important ground for web developers of today and tomorrow. It began
by discussing the idea of resources, the conceptual space that they represent, and their importance to
modern web development. Next it moved on to REST, a relatively new and very particular type of web
application architecture involving resources and HTTP-managed CRUD operations.

In addition to describing the REST mindset and showing an example refactoring of earlier code in

the book, this chapter made the argument that REST is a powerful tool to assist your web application
development. Applied properly, RESTful development can benefit all aspects of a project: It guides your
application design by forcing you into a resource-oriented mindset; simplifies your programming by
standardizing on HTTP verbs and CRUD for virtually all the application’s features; and opens your
application as a reusable resource to the outside world by providing consistent resource-centric end-
points.

Finally, this chapter demonstrated how Ruby on Rails provides REST capabilities that you can easily roll
into your own projects. Most additions that Rails includes to support REST come in the router, and this

chapter showed you how to create basic resource routes, nested routes, and singleton routes.

The next chapter continues on the design thread by addressing another critical component of modern
web applications: the AJAX interaction patterns that dynamically link client to server.

138

The Five Styles of AJAX

Web sat waiting in a booth at the back of the smoky pub, staring at the aged carving in the wood above
his table.

LOKE ERST YE THENK, AND BE YE THE WOLRDE

And the phrase beneath it, in the same ornate style but newer, he thought, given the brighter color of the
wood bezel.

FRIDAY NIGHT FISH AND CHIPS SPECIAL

The pub was a strange maze of tables and shadows, wood and brick columns holding up the floors above.
It was buried underneath an otherwise normal building holding commercial space, an old wine cellar that
used to belong to a distributer on the seventh floor. Before that it was the factory floor for a parachute
company, and even before that it was rumored to have been an underground alchemy supply shop.

Now it was a pub. A damp, earthen smell permeated through the sounds and odors of fried fish and pipe
smoke.

“Hi! My name is AJ, and I'll be your server today! Is there anything I can get you to drink?”’

Web thought the waitress looked out of place in this old tavern. She beamed at him, waiting for his reply
with her spiked, neon-blue hair; she wore a shining pink plastic halter top and costume-like makeup. She
was balancing a tray of empty pint glasses on one hand and a skateboard beneath her feet.

“Actually, liquids tend to give me a short. Still some old ISDN lines in here,” Web said, patting his
stomach. “Could I just have some chips? You know what, throw in the fish, too.”

““Sure thing. No liquids. Fish, chips, coming right up,” she said as she rolled away.

From afar, Web could see the dim outline of the maitre d’ directing a group of people toward his table. He
recognized Jen from before, along with three others he didn’t know. He stood up to shake their hands as
they approached the table.

““Web, it's good to see you again! I'm sorry I had to run so quickly before. Let me introduce you to my
friends — "

Chapter 7: The Five Styles of AJAX

“Napkin!”

AJ cut through the group of people on her skateboard and left Web with a napkin in his outstretched
hand.

“Rusty, Matz, and Schema,” Jen continued unfazed.

Web gave each a hearty greeting, and the five sat down in the booth. Before the newcomers even had time
to pick up their menus, AJ was back, tossing a plate down on the table.

“Plate!”” AJ’s voice trailed past as she skated without slowing, the empty plate left rattling in a circular
motion on the table.

Matz looked at the spinning plate and inspected the cover of the menu closely. “How strange. I've heard
of these new places. What did you order?”

“I got the fi — 7

“Fish!”” A] was flying by on her skateboard in the opposite direction this time. She managed a perfect
shot from four feet away; the fish landed squarely on the far side of the plate and didn’t even slide a
centimeter.

“Fish. And chips,”” Web replied, starting to worry about how his knife and fork would be delivered
to him.

What we now call AJAX was once a great idea hiding in plain sight. For years, the XMLHt tpRequest
object sat with little notice or use, first in Internet Explorer and later in Mozilla. Then in the spring of
2004, Google began beta-testing a new type of web-based e-mail client called Gmail, and overnight, the
incredible potential of AJAX just made sense (with the feeling of “duh, why didn’t we think of that?”
that often accompanies a discovery in plain sight).

From its inception, the Web grew up around a “‘one document, one request”” paradigm that made perfect
sense for the document-centric environment it was created to serve. To display multiple documents at a
time, the web community created the notion of “’frames,” walled-off divisions within the page that each
loaded its own separate document, not unlike the Picture-in-Picture feature on large TVs. Developers
could control these frames to a reasonable degree with JavaScript. But what if a web browser didn’t need
to deal with entire documents at a time, and instead could make requests that replaced just tiny chunks
within the existing document?

AJAX (Asynchronous JavaScript and XML) is the technique born of that “what if.”” Technically, the term
refers to the use of asynchronous JavaScript requests for XML data. In practice, AJAX refers to the entire
collection of common tricks and patterns that have grown up around the XMLHt tpRequest and the way it
can transform web development — both asynchronously and synchronously, with both XML and

with HTML.

Developing with AJAX can be tricky, though, because it has a tendency to lead astray that elegant design
you've been working on for the past few months. The reason is that AJAX is every bit as much a paradigm
shift for the Web as the and <form> tags were a decade before. Nearly all the collective wisdom on
web application development centers on the idea of the web site as an application. Suddenly, with AJAX,
a single page can now be deserving of this title.

This shift in potential — from site as application to page as application — is the difference between

CNN. com and Microsoft Word. It is the difference between forever writing styled-up database front-ends
and writing full-featured, interactive applications. It opens the possibility, if you want it, to completely

140

Chapter 7: The Five Styles of AJAX

throw away the document paradigm of the Web and use HTML just as domain-specific user interface
(UI) language. In other words, AJAX is a big deal.

This chapter introduces you to some of the design issues in AJAX and shows you how to integrate AJAX
smoothly into your Rails applications. I discuss the different styles of AJAX development and describe
how to design your sites so that you can strike a balance between the middle of two extremes: not quite
a single-page application, but not the page-heavy web applications of yore, either.

The Big Secrets

But first, the big secrets about AJAX. Although AJAX has made enough headlines to become a household
word, the reality isn’t quite what the headlines would have you believe. Before addressing some of the
more detail-oriented aspects of AJAX development, here are two big secrets about AJAX that a lot of

the material about AJAX out there leaves out, plus a third one directed at Rails developers in particular.

AJAX Isn’t Necessarily the Hard Part

The first secret is actually some great news: If you had a good understanding of web development before
AJAX, you already have a good understanding of AJAX, even if you've never used it, from a technical
perspective. You don’t need any gigantic books or night courses, just a general understanding of how
AJAX-based development relates back to normal web development. The XMLHt tpRequest isn’t the hard
part — all the design issues and JavaScript that come along with it are.

The xMLHt tpRequest itself has long been buried under layers of abstraction by all the incredibly capable
JavaScript frameworks available to you, so the mechanics of performing AJAX requests are really only a
method call. The request itself works the same way every other web request you've ever handled does,

except that you're dealing with serialized data and HTML fragments instead of full-blown web pages.

Because the how is easy, you need to develop a good understanding of the why and when to use AJAX in
your application. This chapter covers several different styles of AJAX design to help you pick a strategy
for integrating AJAX into your application.

From a development standpoint, you also need to be prepared to become a JavaScript developer if you
want to use AJAX. And although you might not need to worry too much about the mechanics of AJAX, it
is a good idea to have a book or two dedicated to JavaScript on your shelf. JavaScript idled on the outer
fringes of web development for a long time, but the slow advance of browser standardization, hardware
capabilities, and now AJAX have made it an unavoidable staple of modern web development. Get to
know JavaScript well. What people don’t tell you when they describe how AJAX will change the way
you code is that the changes are often three lines of “AJAX code” followed by thirty lines of JavaScript
UI tricks and data manipulation.

AJAX Introduces Tough Design Issues

The second secret of AJAX is related to all the JavaScript you may find yourself writing after you begin
to integrate AJAX into your design. AJAX can be a bit of a gateway drug that slowly encourages you to
write more and more of your application logic in client-side JavaScript rather than on the server. If you
don’t pay attention to the way you are designing and writing your JavaScript, you can end up with a web
application that is difficult to maintain no matter how well designed the server side is.

141

Chapter 7: The Five Styles of AJAX

The “gateway drug’” part comes into play because of the way AJAX requests tend to hang out around
hyperlinks and make you accustomed to in-lining JavaScript in your HTML. One of the most common
ways to use AJAX is to cause some link or form to load a new bit of information dynamically into a region
of the page. Using the Prototype JavaScript library that ships with Rails, it is easy and logical to layer the
AJAX functionality right on top of the link inline. After all, that is what the Rails helper functions do. For
instance:

<%= link_to_remote 'foo', :url => "http://www.google.com",
:update => {:success => "blog_post_container", :failure => "error_container" } %>

generates the following code:

<a href="#" onclick="new Ajax.Updater (

{
success: 'blog_post_container',
failure: 'error_container'

I

'http://www.google.com',

{
asynchronous:true,
evalScripts:true,
parameters: 'authenticity_token=' +

encodeURIComponent ('f246bc6fcflfeefbbebc7e7723e24920e5a64ea3")
}

); return false;">foo

With these dynamic links integrated into your code and working nicely, not to mention generated
JavaScript from all the other Prototype and script.aculo.us helpers, it isn’t such a crime to add a bit of
custom JavaScript of your own at the end of a partial or template:

<script type="text/javascript">
function requery map () {
var argString = build_query_args();
var url = "/map_items/query?" + argString;
if (gmap != null) {
new Ajax.Updater ('map_update', url, {
onComplete: function () {
new Effect.Highlight ('map_update') ;
¥
asynchronous:true,
evalScripts:true
1)
}
}

</script>

Bit by bit, the JavaScript creeps in, added as needed into views and partials when AJAX requests spawn
the need for a bit of extra logic on the client side. Then one day, you realize that your HTML is starting
to become as illegible as the days of <TABLE> abuse that you tried hard to forget. But now it’s even
worse, because the problem extends outside the realm of the view and into that of the controller, diluting
decision-making control between the browser and the server-hosted controller.

142

Chapter 7: The Five Styles of AJAX

Moving business logic into the client side isn’t categorically a bad idea, and many of the more feature-
intensive web applications have no other choice. Inline JavaScript isn’t necessarily bad, either, when used
in the right places. What is dangerous is haphazard coding, and this is the danger you must be aware of
when you begin to integrate AJAX throughout your application, because it can crop up even amidst the
best intentions.

The only tool you need to battle this hazard is your own awareness of the way you are writing code.
Pay attention to the way you’ve chosen to use AJAX and the level of importance that JavaScript plays in
your application. If you find yourself writing a lot of JavaScript inside files that end in .rhtml, take a step
back and determine whether the complexity of your client requirements necessitates a more structured
JavaScript development approach.

You Have Your Pick of JavaScript Frameworks,
Even in Rails

The timing of Ruby on Rails’ initial release was serendipitous. It caught the explosion of AJAX and
JavaScript development right near the beginning and was able to integrate two of the early JavaScript
libraries, Prototype and script.aculo.us, into the framework with built-in macros and support. This sup-
port helped solidify these two frameworks as favorites among the Rails crowd (helped, certainly, by
Prototype’s Ruby-like additions to JavaScript). Unfortunately, this tight coupling has often led to the
misconception among many new Rails users that Prototype and script.aculo.us are part of Rails, or that
Rails depends on these two libraries. The reality is that you have your pick of frameworks to use with
Rails, just as you do in any other server-side environment.

The Prototype and script.aculo.us frameworks, coupled with the macros built into Rails that use them,
can give you a lot of mileage, but they are just one pair of frameworks among many fantastic ones that are
available for free. The following table contains the front-running JavaScript libraries du jour — a list that
is likely to change as time passes. These libraries vary wildly in philosophy, capabilities, and approach,
and each deserves a serious look before you choose one for your site. In general, they can be grouped
into two categories: the minimalist (Prototype, script.aculo.us, MooTools, jQuery) and the widget based
(YUI, Dojo, Ext).

Standard
Framework Sound bite Effects Widgets Extras
Prototype OO-based toolkit that The basis and inspiration for
provides many features that many other frameworks.
feel missing from JavaScript
compared to other scripting
languages.
script.aculo.us Lightweight drag and drop X Well tested, lots of real-world
and graphics operations for use to vet its implementation.
the Prototype library.
Yahoo! Ul A modularized collection of X X Namespaces, rich custom
(YUI) utilities and themed widgets event support, and nice data
made by the professionals. table.

143

Chapter 7: The Five Styles of AJAX

Standard

Framework Sound bite Effects Widgets Extras

Dojo The kitchen-sink framework, X X Large widget set; SVG
with a bit of everything for support.
everyone.

MooTools Extremely lightweight and X Tooltips and Scroll-wheel
modular; feels like a refined support.
version of Prototype and
script.aculo.us.

jQuery Provides a new and powerful Many plug-ins that provide
way to interact with the additional features; superb
DOM, events, and AJAX. documentation.

Ext Industrial-strength widget X X Great themes; can be used on
library; the slickest and most top of jQuery, Prototype, or
business-oriented set of UI YUI; Java Swing-style layout
widgets on the block. managers; integration with

other frameworks (Gears,
AIR); templates.

When evaluating a framework to use in your project, don’t look at just the demo page, even though the
demos are important. Also look at how modularized the framework is, what helper functions it provides,
and how easy it is to extend with your code. You will inevitably end up writing custom extensions for
the framework at some point, so it is important to pick one with a design that you can work with. Also
look at the quality of the documentation for the features you are interested in. Some of the frameworks in
the table have wiki-based documentation, so the coverage isn’t consistent from feature to feature. Finally,
browse the Internet to see what others are saying about the framework. If a cool feature drawing you to
a particular framework actually results in memory leaks and browser crashes, you'll want to learn this
from others’ experiences instead of your own.

Using one of the frameworks in the table (outside of Prototype and script.aculo.us) will mean that you
no longer have the nicety of RJS and all the Rails’ JavaScript helpers, but that isn’t necessarily such a bad
thing. Although the shortcuts that Rails provides can be nice, there is also value in getting to know your
medium well and diving into the JavaScript yourself. Ultimately, it will make you a better web developer
in all languages. So if one of the languages seems to fit your needs better than the others, go for it.

The Five Styles of AJAX

If the wonderful libraries I just covered make the mechanics of AJAX so easy, then what, besides the
JavaScript development that comes paired with AJAX, is there to learn? A good bit — it just isn’t code.

Designs and the coding that follows must be coherent and consistent. In some respects, this can matter
even more than your technical wizardry with a programming language. (One Ruby developer on the
core team even commented that you can sometimes tell what country a core team member is from just
by looking at his or her coding style.)

144

Chapter 7: The Five Styles of AJAX

This section of the chapter introduces five different styles of applying AJAX to enhance your web
application.

Q Proxy style

Q Partial style
Q Puppet style
QO Compiled-to-web style
Q In-place application style
These styles are by no means official standards — the terms are creations of this book — so there are

no doubt more ways to organize your code. These five appear to be the predominant ones, however, so
provide a good starting point for just about any application type you want to pursue. (You can contribute
your own styles and ideas in the online comment section for this chapter at http://artofrails.com/
chapter/7.)

Each of these five styles is a different way to approach AJAX, and the code you write for each will have
a different look and feel to it. Which one to use is your choice, and mixing more than one style in your
application is okay, too. The goal of this chapter isn’t to box you into a single way of coding but rather to
make you more conscious about design issues you might otherwise have overlooked. Rails applications
tend to use two of the five styles in combination — partial style and puppet style. Both of these are
explained in greater depth (see the “Partial Style”” and “Puppet Style” sections, later in the chapter).

Keep in mind, too, that these are development styles, not application types, so you really do have a
choice. Most web applications can look and operate the same on the surface while using any one of the
styles described in the following sections. To drive home that point, and to better explain each style, the
AJAX gurus at meebo have kindly allowed the use of their AJAX-based IM client (see Figure 7-1) as a
hypothetical example to demonstrate each AJAX style and have even thrown in a few bits themselves.

ﬁmm-—mnls:’-n—.r:..—.’-n =)

T »

[10:45] twinkerdill: haha well you just said it AGA &
[10:45] tedisnotfred: its like the knights of nee

[10:45] twinkerdill: oh wait! U
[10:45] twinkerdill: i said it!

[10:45] twinkerdill: we can say it!
[10:45] tedisnotfred: no, no, you said it again! b

B1usO

Y

| twinkerdill is online

Figure 7-1

For each style of AJAX, I'll take a look at how meebo’s architecture might be designed if it were to use
that style. Doing so should provide a good, real-world comparison between the different styles, as well
as demonstrate that the same functionality can take many different forms when it comes to AJAX.

145

Chapter 7: The Five Styles of AJAX

Proxy Style

The proxy style is how you might think of AJAX when you first hear the acronym’s description. With this
strategy, the application still takes place across multiple web pages, and the server remains a big part
of the decision making. AJAX is used as a back channel for data connections between rich JavaScript
elements on the page and functionality and data hosted on the server. Figure 7-2 depicts this style.

/

JavaScript [\

> Frameworks
[\
] XML,
Model < > JSON,
etc.
View AJAX connection

provides remote data
support encapsulated by

\ proxy objects.)

Controller

N /

Figure 7-2

The proxy style is essentially a Model-by-Wire style of coding. Just as your model objects are rich Ruby
representations that front for the data stored in your database, proxy-style AJAX uses rich JavaScript
objects that front for the capabilities provided by the remote server. Certain JavaScript-enabled elements
on the page contain client-side logic relevant to their display and user interaction. In this way, the client
pages are rich, JavaScript-enabled environments capable of taking care of themselves from a display
point of view.

A good example of this style is the YUI DataTable widget. This widget acts as an embedded spreadsheet,
complete with cell renderers, validation, and sortable columns. The widget can be initialized, configured,
and added to the page completely through JavaScript. Provided a URL, it will contact that endpoint
expecting XML data in return that it uses to populate its rows and columns.

On the extreme end of the proxy style is the DWR (Direct Web Remoting) framework. Like a hand-written
version of GWT (the Google Web Toolkit), DWR couples full-blown JavaScript service proxies for remote
Java services. JavaScript callers on the client side can use the proxy as if it were a regular JavaScript object,
while behind the scenes it enacts each method call by passing it to the server over an AJAX connection.

Buddy List
a Hangs out with: XML, JSON
QO As seen in: DWR, YUI, any Server-backed UI Widget

146

Chapter 7: The Five Styles of AJAX

Points to Ponder

Q Supports a clear divide between AJAX-related functionality and HTML-related functionality on
the server, as AJAX responses are kept to serialization formats

Q Keeps the majority of your AJAX-related feature implementation on the client-side

Chatting with meebo

Proxy-style meebo would have several JavaScript libraries included with each page — some to manage
the windows and Ul elements, others to represent certain conceptual objects within the meebo applica-
tion, such as a Chat, a BuddyList, a Buddy, and so on.

Each of these objects would be built up with methods to represent the main actions a user might want
to perform. An instantiated Chat object might provide functions such as say (String text), close(),
and updateStatus (String status), whereas the BuddyList and Buddy classes have similar methods
pertaining to them. These methods are responsible for both updating their visual appearance on the page
and transmitting data back to the server over AJAX. So when a user presses the enter key inside a chat
window, it activates the chat . say (textbox.value) function, which clears the text box, appends a line of
text to the chat window and makes an AJAX call to an endpoint on the server that accepts chat messages.

Each of these objects also must maintain a periodic or long-running connection to the server for asyn-
chronous updates about things others have said to them and buddy status changes. In the local JavaScript
VM, they all register with a local connection manager that allows them to pool their interests and get their
updates through a single HTTP connection that acts as a lifeline to the server. This connection manager
would use another set of methods on the object designed as callbacks for meebo events that come in from
the server, methods such as receiveChatRequest (Buddy otherBuddy), buddySignedon (Buddy buddy),
and buddySignedoff (Buddy buddy).

The hypothetical proxy-style meebo architecture looks a lot like traditional desktop programming. A
rich set of libraries is built up around the abstraction of chatting, and these libraries perform the work
necessary to shuttle the information back and forth to make the abstractions function as expected. After
these proxy objects in JavaScript are written, the JavaScript developer doesn’t even need to know that he
or she is using HTTP because these details are encapsulated completely within the proxy objects.

The Real meebo

Meebo actually uses a similar style to this, as co-founder Elaine Wherry points out. Because so many
meebo events occur asynchronously on the server, rather than in the client, the server compiles a list of
event updates for each client and sends them as a batch. These batches are delivered in JSON and look
like this:

{
msgevents:
[{buddyl: 'hello'}],
[{buddy2: 'are you there?'}],
buddyevents:

147

Chapter 7: The Five Styles of AJAX

[{buddyl: 'online'}, {buddy2: 'away'}]l},
accountevents:
[{userl: 'online'}, {user2: 'offline'}]

}

When this JSON object is received at the client, its different components are sent to the various model
objects that manage different components of the client-side chat environment. Changes in these
model objects, in turn, cause the Ul to be updated appropriately.

Partial Style

Partial-style AJAX is a completely different way of applying AJAX made popular by the Ajax.Updater
object in Prototype and the Rails macros that use it. In this style of coding, AJAX is used to transfer bits of
preformed HTML, rather than data, back and forth. These HTML fragments are then inserted into some
location on the page, usually depending on the status of the response (success or failure). This style is
depicted in Figure 7-3.

/

JavaScript [\

Frameworks
A

AJAX
connection
provides snippits
of HTML to

Partial insert into
- existing page
HTML

./

Ajax Links

Y

(& /

Figure 7-3

Partial-style AJAX is attractive because of its intuitiveness and similarity to the way in which web appli-
cations worked in the pre-AJAX days. In those days, you clicked a link and received a new page. With
partial-style AJAX, you click a link and receive a new page fragment. Think of the ““Next 20 Items” link
in an AJAX-powered storefront, the “Expand Thread”” link on a discussion board with nested comments,
or the “Add Item” button on a Todo list application. All these actions are circumstances in which the
simplest way to implement them is to connect to a URL that causes the desired action to happen and
then have the server respond with only the HTML necessary to furnish the response, which replaces or
adds to HTML already on the page.

Buddy List
Q0 Hangs out with: HTML
O As seen in: Prototype, Ruby on Rails

148

Chapter 7: The Five Styles of AJAX

Points to Ponder
Q Frees you from having to serialize and deserialize data to send over AJAX connections.

0 Ensures that the server is always in sync with the state of the client (for example, if you try to add
anew item to a shopping list, the item will not appear in the list unless the AJAX response shows
that the server understood it was supposed to add the item).

Q Allows your HTML development to remain HTML development — no need to write JavaScript
that outputs HTML or goes to great lengths manipulating the DOM structure.

0 Provides greater flexibility over the physical layout and structure of your code, because it resides
on the server and is sent to the client in small bits when appropriate, rather than in a JavaScript
file sent in bulk to the client.

Q Splits the development of AJAX-related features between the client and the server.

0 Encourages more round-trips to the server than most other approaches, because nearly all signif-
icant changes in the information displayed must be provided by an AJAX request.

Chatting with meebo

A partial-style meebo would have a very different code-base from a proxy-style meebo. Whereas the
proxy style looked like a traditional application that happened to be written using web languages,

the partial style looks like an old-school web application adapted for AJAX. Each object on the page,
such as a chat window and its components, is thought of as a DOM element with a known ID instead of
as a JavaScript object that maintains a fragment of HTML. Dynamic interactions are performed by first
consulting the server and then choosing a DOM ID to apply the HTML result to when they return.

A chat window, for example, contains two main components: an AJAX form for sending text and a
CSS-styled ordered list for displaying the chat. When a new line of chat is sent to the server via AJAX
form submission, the response contains a server-prepared <1i> element representing that new line as it
should appear in the sender’s chat history. If the status code of the request indicates success, the user
appends the server response to the element that represents that chat window’s dialogue.

Receiving asynchronous updates from the site is a bit problematic if you try to stick to pure partial-style
coding, because each element of the Ul must request updates individually so that the client knows where
to place the HTML that returns. A periodic AJAX request is made from each chat window to an endpoint
that acts as a queue for any incoming chat messages, filtered by chat. This endpoint pops any existing ele-
ments off the queue and uses them to render a series of <1i> elements containing the formatted chat lines.

Puppet Style

Puppet-style AJAX is the other form popular with Rails developers, primarily because of the RJS package
that ships with Rails. From the perspective of the client code, this style looks a lot like the partial style.
The difference is in the contents of the data that comes back from the server. In partial-style AJAX, the
response from the server is HTML fragments. In puppet-style AJAX, the response is JavaScript to be
executed on receipt. In this way, the client acts like a marionette, sending AJAX requests to its puppeteer,
the server, and executing its instructions in response. Figure 7-4 shows a depiction of this style.

This manner of writing AJAX is unique because it creates an implied dependency between the client
page and the server application: The page can’t function without instruction from the server, and the

149

Chapter 7: The Five Styles of AJAX

server can’t send instructions without knowledge of the page. This dependency is different from most of
the other styles of AJAX, in which the page operates more or less as a stand-alone and self-managing
unit after it leaves the server. Even when using AJAX, the data provided by the response is under

the control of the JavaScript code in the client. Not so with the puppeteer approach, because the page
blindly executes whatever JavaScript is sent back to it. This dependency has both benefits and
downsides.

/

JavaScript [\
P | Frameworks
A
| Ajax Links I > AJAX connection
provides JavaScript
) . that modifies content
JavaScript Instructions on existing page.
Jump! Move!
Highlight! A JavaScript

Replace! \ Vi
|
N J

Figure 7-4

On the plus side, it removes the need to replicate model objects with proxies on the client, saving you a
lot of time in JavaScript development. Because the AJAX response is JavaScript pieced together by the

Rails server dynamically, these JavaScript templates can use your server-side models and environment
in the same way that HTML templates can. When you think about all the time that is sometimes spent

marshalling and unmarshalling data to get it between client and server processes, the ability to embed

server-side data instances directly into dynamically generated JavaScript is a great relief.

On the downside, this tight relationship between the client page and the document prepared by the
server can be a bit troubling from a design perspective. In order for the server to prepare JavaScript

to tell the client page what to do, the server needs to know what the current state of the web page is.
In an environment that is theoretically stateless (or, acknowledging the role of session variables, state
avoiding), this relationship creates assumptions on the server that can cause problems down the road in
two different ways.

The first problem is that the controller must presume to know what is on the page even though it no
longer has control over the page when the page is in control of the client. This lack of control limits your
ability as a developer to use JavaScript on the client-side to modify the structure of the page, because
each modification you make increases the risk that your server-side code will make an assumption about
the DOM that no longer holds.

The second problem is that it limits the reusability of your AJAX-enabled controller actions. If a controller
action is providing a piece of data, whether XML or HTML, that action can be used by any page that
desires that data, and perhaps even reused as part of an APIL If the AJAX-enabled action responds with
JavaScript instructions, however, it is applicable only to the page or pages that it was designed to operate

150

Chapter 7: The Five Styles of AJAX

on. Over time, this dependency can lead to the need to implement the same functionality multiple times,
one for each page that requires it.

Despite its downsides, puppet-style AJAX remains a popular and useful option if it fits your project
requirements and development style. Later in this chapter, you'll see in more depth how to implement
Rails controllers with this technique using RJS.

Buddy List

QO Hangs out with: JavaScript
0 As seen in: Prototype, Ruby on Rails

Points to Ponder
Q Frees you from having to serialize and deserialize data to send over AJAX connections

O Reduces the need to rely on large, static JavaScript files, because they are replaced with small bits
of dynamically generated JavaScript sent via AJAX

O Removes intelligence from the client application, because the response from the server is needed
to instruct the client what to do when key events occur

0 Encourages more round-trips to the server than most other approaches, because nearly all signif-
icant changes in the information displayed are done at the command of script code sent back in
an AJAX response

Q Places a circular dependence between the client page and the server API that may limit the
reusability of your code and put you at higher risk for bugs

Chatting with meebo

The puppet-style meebo would be in some ways like an empowered version of the partial-style
meebo. The server would still return fragments of HTML, but it would do so as the arguments of
JavaScript methods that will insert them into the regions of the page. Because of this, the server con-
trols where the HTML will be inserted, relieving the need for each widget on the client page to poll the
meebo server separately.

When a user sends a chat message, the response is a block of JavaScript that instructs the browser to
insert a new list element at the bottom of the chat and scroll the chat window downward. Receiving
chat messages from other users works much the same way, whether by a polling process or a standing
HTTP connection. As the queue of new messages for a user is emptied, these messages are converted
into a series of JavaScript instructions to insert the right bits of HTML into the proper chat window on
the page. As the JavaScript fully describes the actions that need to be taken, no decision making is needed
by the client, and multiple heterogeneous updates can be sent in the same batch.

Compiled-to-Web Style

The compiled-to-web style of AJAX is a bit of an anti-style because it is defined by the very lack of developer
control over how JavaScript is written and how AJAX is used. This is the one style that can work with
only specific frameworks, because the framework must provide some abstraction other than the web to
the developer and must compile code using that abstraction down into web pages and server calls. Even

151

Chapter 7: The Five Styles of AJAX

RJS, which can be thought of as a Ruby-to-JavaScript compiler, doesn’t qualify for this level of abstraction
away from the web because it is only a direct replacement for JavaScript, not the entire web architecture.
Figure 7-5 depicts this style.

/

AJAX
connection
provides remote (
data support |
PROXY Service
Machine-generated HTML, PROXY |<—>| Service Server-side
JavaScript, and CSS application code
PROXY Service
Machine-generated I
Proxies and service
endpoints

(&

Figure 7-5

The primary example of this type of coding is GWT, the Google Web Toolkit. GWT allows developers
to write web applications using Java and a Swing-like library. Provided that certain conventions are
followed, the resulting application is compiled down to a server-side component plus the HTML, CSS,
and JavaScript needed to fuel the client-half of the application.

Compiled-to-web frameworks such as GWT are a good fit for people who prefer to avoid AJAX and the
web world of languages in general and who would rather take advantage of the language environment
and tools available at some higher level. For GWT, this means that developers get to write web applica-
tions as though they were Java applications, providing all the benefits of Java debugging and Java IDEs
for free.

The catch is that you surrender control of the code that is ultimately produced to form your web appli-
cation, making it difficult to fine-tune features in nonstandard or innovative ways. In this regard, it is
the web equivalent of compiling Java down to bytecode. These types of frameworks usually allow you
to sneak into HTML and JavaScript if need be, but if you do this too often, you circumvent most of the
reason for using such a framework in the first place.

As web applications grow in complexity and begin to displace desktop applications, some technologists
predict that the practice of developing and maintaining large user interfaces in HTML and JavaScript
will become intractable. If this prediction proves to be true, two approaches will likely emerge in place of
traditional HTML for desktop-like applications. The first is proprietary run-time environments, such as
Adobe’s Flash, Flex, and AIR or Microsoft’s Silverlight, and the second is compiled-to-web frameworks
such as GWT. For that reason alone, this style of development is worth consideration, because it may
grow in popularity with time.

Buddy List

O Hangs out with: Utterly incomprehensible, machine-generated JavaScript and HTML
O As seen in: GWT

152

Chapter 7: The Five Styles of AJAX

Points to Ponder

Q Does the compiled-to-web framework you are using provide a feature set that is full enough
for you to develop your application? (It is difficult to write custom widgets that “play well” with
these types of frameworks.)

0 Provides some development abstractions that are not easily available using web-native
approaches.

Q Usually allows you to develop your application ignoring, or heavily deemphasizing, the client-
server divide. It handles creation of client-side proxy objects that fetch data from the server.

0 Machine-generated web code is effectively impossible to debug without the help of a debugging
environment provided by the framework you are using. If this debugger doesn’t fix your prob-
lem, you're pretty much stuck.

Q Harder to customize and add new functionality to than are styles that use a web-native
approach.

Chatting with meebo

The compiled-to-web style of meebo would be coded as though it were a Java application. Upon deploy-
ment, this Java application is automatically translated into separate server and client components, and
the mechanics of managing the information flow over HTTP requests is left entirely up to the framework.
In this approach, objects that represent elements of the user’s experience, such as the chat window and
buddy list, are marked as being objects that compile down to client-side code. These objects interact with
other objects, such as chat queues and buddy events, that are marked as being server-side objects. The
objects marked for the client become JavaScript and HTML entities. Those marked as server-side objects
are compiled into server-side service endpoints. Finally, a third set of objects remains entirely on the
server to manage supporting details at too low a level to be of interest to the client connection. When
the project is compiled, the result is a client-side proxy for the server’s functionality similar to the proxy
style, except that it is machine generated and opaque to the developer’s tinkering.

In-Place Application Style

The last style of AJAX development is the most extreme, even more so than the compiled-to-web
approach. In-place web applications are essentially rich-client applications that happen to be deployed
as a bundle of HTML, JavaScript, and CSS. They exist on the web, but only because that is how they are
deployed. Local storage is made possible through the use of a proprietary run-time environment (such
as AIR), a browser plug-in (such as Google Gears), or native browser support (such as Apple’s WebKit
browser engine), and that storage is used to persist much of the user’s data for access when offline.
Figure 7-6 depicts the in-place application style.

When the user is connected to the web, AJAX connections are used to synchronize application data
with the master copy on the application server. The web site might even operate offline, but additional
features are available when web connectivity is present. The design attempts to keep AJAX requests to a
minimum, though, and to provide just these extras. The majority of interactions and state modifications
on the page are handled locally via JavaScript so that the page can continue to function at some level
without an Internet connection present.

This type of development is appropriate for developers who want to go after either the traditionally
non-web market or court users who are concerned about poor or only periodic network connectivity. An
example of the latter case is Apple’s iPhone, released in 2007 with the web as its development platform

153

Chapter 7: The Five Styles of AJAX

but whose slow and sometimes unavailable wireless network interfered with making this platform a true
killer application. Developers quickly found ways to embed data locally using strategies ranging from
cookies and bookmarklets to data URLs that enabled small web applications to be loaded on the phone
in such a way that they worked both on- and offline.

‘)

|
JavaScript
| FrameWorks |
’4'\
{\ , (\
~ View Controller
AJAX connection provides
Model synchronization between
f —3 client-side persistence and
\ Persistence Layer the server-side database
Acts as the authoritative
)) < > XML,
information source for
ser-specific data JSON,
\ user-specill etc.
Figure 7-6

Buddy List

0 Hangs out with: A menagerie of big-name and experimental technologies

a As seen in: Google Gears, Adobe AIR, WebKit, Dojo

Points to Ponder

O You have less of a chance to take advantage of the powerful body of server-side tools available to
you as a developer.

QO HTML is hard to maintain when it is written through the proxy of JavaScript.

O You are edged out of the realm of web development and into the realm of desktop application
development (that just happens to be implemented using web languages).

0 Users have a way to use your web application when they aren’t online.

Chatting with meebo

The in-place design strategy is one in which the Internet (and AJAX) enables certain core features

of the application but is not necessary for a majority of the application to continue functioning as normal.
This changes the architecture of a meebo chat significantly and makes it look a lot like another type of
application that we use every day: e-mail.

The first major change is the presence of a persistence mechanism on the client that allows data to be
cached to disk and recalled later. This persistence layer, not the server, becomes the authoritative data
source from the web interface’s perspective. The web interface transforms into an application built on
top of that local data storage that happens to be built inside a web browser.

154

Chapter 7: The Five Styles of AJAX

When the user sends a chat message to another user, the web interface registers that message with a
JavaScript model object fronting the local persistence layer, which adds the message and marks it as
unsent. Another process continually scans this local data store for unsent messages and attempts to send
them if an Internet connection is present.

Messages are received in the same fashion as the proxy style: Some client-side JavaScript process main-
tains an AJAX connection to the server. When new messages are available for the user, they are returned
in a serialized data format such as XML, placed inside the local data store, and flagged as undelivered.
Through events or a polling JavaScript process, these undelivered messages are transferred onto the web
interface and added to the appropriate chat window.

AJAX as Just Another API

Handling the AJAX request from the server-side is just like any other format-specific API you might
write. Just as you used the respond_to method to serve up multiple response formats in the previous two
chapters, so you can use similar techniques to detect an AJAX request and respond to it appropriately.

Detecting whether a request is an AJAX one is a bit trickier than using the API-centric respond_to blocks,
however. Those blocks were based entirely on the desired response format, but this might not be enough
with AJAX, because the same could be used for both AJAX and non-AJAX responses. Given that, you
have a few different options for detecting whether a particular request is an AJAX one.

0 Pick a format to always use for AJAX and go with it. When using the puppet style with Rails,
this is the most sensible choice, because the response format of JavaScript can be used as the
indicator for an AJAX request and doesn’t run any risk of being confused with requests for a full
page load.

Q If you dig down into the default MIME types registered for you by the Rails framework, you will
find one named JS defined to represent requests that come from a JavaScript process instead of a
full page load:

Mime: :Type.register "text/javascript", :3js,
%w(application/javascript application/x-javascript)

Q This means that all your AJAX requests must either use the add an Accept header of
application/javascript or application/x-javascript along with their requests or use URIs
endpoints that end in . js, and everything will be taken care of for them on the server side. Just
add :3js as a respond_to option and render the appropriate JavaScript back to the client in that
case.

Q Detecting an AJAX request in this manner would look something like the following action:

def show
@visit = Visit.find(params[:id])

respond_to do |format|

format.html # show.rhtml
format.xml { render :xml => @visit.to_xml }

155

Chapter 7: The Five Styles of AJAX

format.js { # Render JavaScript response here }

end
end

Use a JavaScript framework that adds, or lets you add, extra headers to the AJAX requests.
Another easy way to detect that a particular request is an AJAX one is with the request object
that is accessible at the controller level. In Rails, this object contains two methods (one is just an
alias of the other) xhr? and xm1_http_request?. Both methods return a Boolean value represent-
ing whether the x-Requested-with header was present on the incoming HTTP request and set to
the value XMLHttpRequest.

Some frameworks, such as Prototype, add this header for you, so if you use Rails” built-in
JavaScript helpers, this technique is guaranteed to work. If you want to use it with some other
framework, then use a debugger or dig into its AJAX request routine to see whether this header
is added; if it’s not, then modify the code a bit to stick it in there. Doing so gives you a sure way
to identify whether the context of a request is a full-on request for a web page or is just an AJAX
request for a smaller bit of information.

Detecting an AJAX request in this manner would look like this:

def show
@visit = Visit.find(params[:1id])

if request.xhr?
render Ajax response here
else
respond_to do |format|
format.html # show.rhtml
format.xml { render :xml => @visit.to_xml }
end
end
end

Implement an alternative set of endpoints for AJAX requests. Every clean and simple design
paradigm breaks down at some point, and the real world reveals itself as being full of exceptions
to the rule. Although much of the Rails design philosophy is attempting to maintain a mini-
mal set of endpoints that can be reused in many different ways depending on the HTTP verb,
sometimes you just can’t layer all AJAX endpoints on top of your existing ones. In these cases,
implement a few endpoints to deal just with AJAX requests.

For whatever reason this crops up, you can always implement endpoints on your web applica-
tion that are intended, from the start, to talk only to AJAX requests. One word of advice if you do
this: Try to maintain some consistency if you are also using one of the preceding two techniques.
Even if a controller action will never handle anything but AJAX requests, you might want to
embed logic looking for a particular header or accept type, just to keep the implementation con-
sistent across your application. That way, your code and intentions will be more clear when you
revisit the code six months after having written it.

Using these three methods to identify AJAX requests, AJAX from the server-side looks just like any
other web request coming in. The only difference is the data that the server chooses to write back to the
requester.

156

Chapter 7: The Five Styles of AJAX

Rails-Style AJAX

Of the five styles of AJAX just presented, Rails developers tend to use two in particular: partial style
and puppet style. Part of the reason for this is that the JavaScript frameworks that ship with Rails and
the Ruby wrappers that have been created around them are heavily biased toward these two styles. As
a result, the Rails community has standardized and grown up around them. This section digs deeper

into controller design and development style for both the partial-style controller and the puppet-style
controller.

Partial-Style AJAX Controllers (and AJAX CRUD)

In the partial style of AJAX, AJAX requests are met with an HTML response, small fragments of a page
that can strategically replace or append an existing region of the page. This style can be one of the easiest
to learn as a new AJAX developer because it minimizes the amount of JavaScript that is written: Nearly
all coding is in HTML. The fanciest the JavaScript ever gets is changing the fragment’s insertion location
based on the reported success of the AJAX call. The following piece of Rails code looks a lot like the
code used to create a hyperlink, for example, but this one instead creates an AJAX-powered link that will
dynamically inject the server’s response into the existing page.

link_to_remote "Next Blog Post",

curl => {
raction => "show",
:1d => (post.next)

+

:update => {
:success => "blog_post_container",
:failure => "error_container"

}

The needs of each project invariably lead to a unique design situation, but as the partial style is applied
to the project, a pattern of use emerges that makes it fit quite well with the CRUD (Create, Read, Update,
Delete) pattern of web resource development. Each CRUD operation has its own special response for
AJAX requests that, applied consistently, will simplify the chore of integrating AJAX into your code.
After learning this “CRUDy AJAX" pattern, you will see how you can use inner templates to organize
the HTML files in your project so that the same files can be used both for AJAX and non-AJAX requests,
eliminating the need to repeat yourself.

CRUDy AJAX

CRUDy AJAX works just as regular CRUD operations do, except that the operations are whittled down
to their very core purpose. Instead of dealing with entire pages, the HTML returned deals only with the
precise object or operation that was requested. Two themes are apparent in the AJAX responses given by
the CRUD operations on controllers:

O When the operation only accesses information (without modifying it), return just the HTML con-
taining the information accessed rather than the whole page.
QO When the operation creates, modifies, or destroys data, do one of the following;:

Q Return the replacement value for the data in question, which should be injected into the
page with some added visual effect to call attention to it

Q Return an error message if the operation did not succeed

157

Chapter 7: The Five Styles of AJAX

The following table shows the traditional CRUD operations for a hypothetical User object and adds their
new meaning when used with AJAX.

Create
Function Full-page Response AJAX Response
new Returns a page containing the form for ~Returns only the form for a new User object.
a new User object.
create Accepts request data and attempts to Accepts request data and attempts to create a
create a new User object, redirecting new User object, sending back a fragment of
the user after object creation. HTML containing a confirmation of the
operation’s success or a small representation of
that object to be appended to the current page.
Read
Function Full-page Response AJAX Response
index Returns a page listing all User objects ~ Returns only the list of User objects without the
page around it
show Returns a page containing the Returns an HTML partial representing the User
complete profile of a User object. object, or perhaps a smaller preview of the
profile depending on arguments
Update
Function Full-page Response AJAX Response
edit Returns a page containing a Returns only the prepopulated form for editing
prepopulated form for editing an an existing User object
existing User object
update Accepts request data and attempts to Accepts request data and attempts to update an
update an existing User object, existing User object, sending back a fragment of
redirecting the user after object update HTML containing a confirmation of the
operation’s success or an updated version of the
User object to replace the old one
Delete
Function Full-page Response AJAX Response
destroy Removes the User object Removes the User object corresponding to the
corresponding to the given ID and given ID and returns a fragment of HTML
redirects the user back to some main containing a confirmation of the operation’s
view success

So, for example, the index action for a controller managing your contact list in meebo would return
only the contents of the contact list itself for AJAX requests, nothing more and nothing less, yielding a
response that looks something like the following:

158

Chapter 7: The Five Styles of AJAX

<ol class="contact_list">
<1i class="aim active">Buddy 1</1i>
<1li class="aim idle">Buddy 2</1i>

Learning to Use “‘Inner Layouts’’

When you design your controllers around the CRUDy AJAX idea, the resulting set of files often looks a
lot like something you are already familiar with: layouts. It is beneficial to see how this pattern emerges
here so that you can look for it and plan for it in your own code.

A layout is a page-sized template that wraps around the result rendered by a particular action. Layouts
provide all the scaffolding around the main content of your page, such as stylesheet references and navi-
gation sidebars, allowing the output of each controller action to concentrate on its unique task. A layout’s
job is all about maximizing efficiency. By pulling the overall page structure into its own separate file,
multiple pages can share the same layout without repeated code. This helpful pattern is easily extended
at the action level of AJAX-enabled controllers.

CRUDy AJAX controllers are most easily implemented by adding another virtual layer to the layout of
your application. This inner layout provides the decorative structure specific to the feature addressed by
that action. The inner layout is implemented with a regular RHTML ERB template, and the content to go
inside it is implemented inside a partial. Figure 7-7 shows a screenshot of the meebo welcome blog pried
apart to show the difference between each part.

meebo.com

hitp:/ [wwwl. meebo.com/

_|o]x

[getting to know you a bit better
getting to know you a bit better
martin posted this on October 15, 2007 D bbbkl

i utive at very lange.
senior executive at very large: t because his
‘entertainment company told me that because his |company ugf , cable, and other
‘company sells through retailers, cable, and other |channels, they dont irectly tale to or hear from their
channels, they don't directly tall to or hear from thei |customers, and it a problem they're actively trying to
‘customers, and It a problem theyre actively trying to lcnange.

s really different here at meebo, and that's one of th

reasons | joined. ' We are very fortunate to enj

reasons | joined. | We are very fortunate to enjoy (et Salcs ik you, teo g e o forume,

that dialog with you, through the biog, forums, [feedback, and surveys like the one we put out last
|week.

Its really different here at meeb, and that's one of the

e e fesdback, and suveyslhe the ovewe put out k|
[wsavue o]
(= IMEEBormS]
I e
Layout Inner Layout Resource
Figure 7-7

Following this pattern of using ERB templates as inner layouts and partials as the content to fill them can
have a homogenizing effect on the implementation of your controller actions. In the respond_to clause
of each action, the HTML block will render the inner layout, and the JavaScript block will render just the
partial that is paired with that inner layout.

Here is an example of what the show method might look like for the BlogController on a site such as
meebo:

def show
@post = Post.find(params[:id])
respond_to do |type|
type.html {

159

Chapter 7: The Five Styles of AJAX

render (:action => 'show') unless request.xhr?

render (:partial => 'post', :locals => {:post => @post}) if request.xhr?
}
... Other respond_to types here
end
rescue
redirect_to resource_not_found_url
end

In this code, the overall template linked to this action contains, by default, the body of the page —
logo, navigational links, and so on — whereas the show.rhtml file contains the inner layout that wraps
around a post and a link to the_post.rhtml partial. On an AJAX (XHR) request, the action renders only
the partial itself, the bare-bones blog post with minimal decoration around the outside.

So how far do you go? Does the innermost partial always need to be stripped down and minimal? Not
at all. The example here errs on that side because it is easier to demonstrate it that way, but your design
may include atomic components that are far more functional.

Puppet-Style AJAX Controllers (and RJS)

In the puppet style of AJAX, AJAX requests are used to modify the page loaded in the client using bits
of JavaScript code. The web server acts like a puppeteer, sending commands through the wire that cause
the remote browser to modify its appearance.

This type of design is markedly different from writing your own JavaScript libraries and including them
in the <head> of your page or writing client-side JavaScript that calls a partial-style AJAX controller

to replace bits of the DOM with updates from an AJAX request. Instead, puppet responses contain pure
JavaScript. They don’t describe how a page or part of a page looks but rather how an existing page should
be modified (recall Figure 7-4). You might think of puppet responses as the mathematical derivative of a
web page.

You can see this difference by comparing the partial and puppet styles with a non-AJAX request, in
this case, the hypothetical “add item” feature of a simple shopping list application, as the following
table shows.

Non-AJAX Approach 1. Enter new item in a form field.

N

Post the form to the server.

3. Receive a new page from the server with an
updated list and an empty form again.

Partial Approach 1. Enter new item in a form field.

2. Send an AJAX request to the server, request-
ing the item be added to the list.

3. Receive a fragment of HTML back from the server
representing the new item rendered as an element that
should be added to the current page.

160

Chapter 7: The Five Styles of AJAX

4. Append that HTML fragment to some
appropriate place on the page.

B. Clear the form for reuse.

Puppet Approach 1. Enter new item in a form field.

2. Send an AJAX request to the server,
requesting the item be added to the list.

w

Receive a fragment of JavaScript back from the server.
4. Execute the fragment of JavaScript.

(The JavaScript, when executed, causes new
DOM elements representing the new item to be
created and inserted into the page.)

5. Clear the form for reuse.

The partial and puppet approach look similar, but they are actually very different. In the former, the
remote web page maintains control over AJAX requests and over what happens as a result of their
response. In the latter, you can think of the JavaScript code executed in the response as the remote server
taking control of the browser to control the outcome.

The puppet style and the partial style can often be mixed. If the JavaScript library you are using to per-
form your AJAX requests is set to evaluate all JavaScript code on receipt, the server can send back HTML
partials that contain embedded JavaScript to animate regions of the page in addition to providing HTML
to replace a region on the page. A good example is a partial containing the container for an embedded
Google Map, as well as the JavaScript necessary to initialize the map. Be careful, though — if you mix
HTML and JavaScript in your partials too much, the overall structure of your web project can quickly
become tangled and not reusable. As convenient as it may seem to do this, a whole project filled with
mixed-type files can be a mess to maintain.

RJS: A Different Kind of View

A large reason for the popularity of the puppet style among Rails developers is the pseudo-language
called RJS that shipped with Rails 1.1 in 2006. R]S is a Ruby library that allows developers to write Ruby
code that is translated on the fly into JavaScript.

Views that are composed entirely of RJS-driven JavaScript are called RJS templates. These templates
form a special kind of view, expressing how an existing page changes rather than how a new piece of
data looks. They can be stored alongside other views with the .rjs extension, or rendered inline from
the controller.

Although the puppeteer approach doesn’t require a tool such as RJS to work, R]S certainly makes it
easier. Many Ruby developers consider Ruby a cleaner and more concise language than JavaScript when
it comes to most operations. The ability to use Ruby-style iteration blocks and the rich set of built-in Ruby
objects can be a nice alternative to JavaScript. RJS also provides a nice Ruby-based API for the Prototype
and script.aculo.us libraries, making their functionality easier to invoke.

161

Chapter 7: The Five Styles of AJAX

RJS even brought about code improvements for 37signals, the company that maintains Rails. In an
August 2006 blog post about a rewrite of its organizer application Backpack, the company writes:

We moved nearly all of the application’s UI logic out of hand-written
JavaScript files and into Ruby using RJS templates. This resulted in approx-
imately 1600 fewer lines of application JS, and let us deliver pages with
substantially less markup, since the edit states are now loaded on-demand
instead of included in bulk with each page load.

How RJS Works

In the same way that the browser makes a DOM API available to its JavaScript environment, RJS provides
a page object that provides ““access” to the DOM. The word access is in quotation marks because the DOM
access that it provides isn’t actually real; code executing on the server is not able to access the browser’s
DOM. Instead, calls on the page object are translated into JavaScript code before the server responds to
the client’s request. Thus, the following RJS code:

page[:chat_window] .insert_html :bottom, content_tag('li', 'pickled herring')
will result in the following JavaScript (don’t mind all the hex codes):

try {
$("chat_window") .insertHtml ("bottom", "\0741i\076hey\074/11i\076") ;
}
catch (e) {
alert ('RJS error:\n\n' + e.toString());
alert ('$(\"chat_window\") .insertHtml (\"bottom\", \"\\0741i\\076pickled
herring\\074/1i\\076\");");
throw e

}

Although the partial-style controllers can work with any JavaScript framework, it should be apparent
from the preceding generated JavaScript that the puppet style is framework specific as soon as you
introduce the idioms of one particular JavaScript framework into your JavaScript responses. In the case
of RJS, the Prototype and script.aculo.us libraries are required for the browser to correctly execute.

Learning RJS

For detailed information about the specific API calls RJS provides, explore the API docs
online at http://api.rubyonrails.org/classes/ActionView/Helpers/Prototype
Helper/JavaScriptGenerator/GeneratorMethods.html.

Or, check out Cody Fauser’s PDF book, RJS Templates on Rails, at http: //oreilly.com/
catalog/rjsrails/.

Elegant Degradation

No, it’s not a euphemism for a beautifully delivered insult. Elegant degradation is the need for your
AJAX- and JavaScript-enabled site to scale downward when accessed by a browser that doesn’t support

162

Chapter 7: The Five Styles of AJAX

JavaScript. These days, such users are far and few between on the desktop, but the rise of cell-phone
browsers makes the need a bit more modern. You have a tough choice to make about how to handle these
users because your plan for supporting these users needs to be consistent. You don’t need to support
every site feature for them (and probably can’t; after all, JavaScript provides a lot of power), but you do
need to be consistent in your support so that you don’t surprise your users. The last thing you want is for
a user to spend 20 minutes filling out a form, only to realize at the end that the Submit button requires
JavaScript to execute correctly.

If your AJAX-powered web application is going to support non-JavaScript users, you're in reasonably
good hands if you chose to follow either the partial or puppet style. This means that you have kept the
application flow in the hands of the web server, and you've kept your thoughts expressed in primarily
HTML instead of JavaScript. But also be honest with yourself about the web medium before you try
to adapt a JavaScript-heavy site to just HTML. Some of the JavaScript applications on the web today
are pushing the limits of what the browser can reasonably do with just JavaScript, HTML, and CSS.
Some of these sites just can’t be done without JavaScript, and that’s okay. If your application makes
extensive use of mouse operations or interactive graphics, or if asynchronous server communication
is absolutely necessary, then the lack of JavaScript might just be the game-breaker, and your valuable
development time is better spent improving the site for JavaScript users than attempting to adapt it for
legacy browsers.

Moving Backward from the Partial-Style

The partial style is most friendly to non-JavaScript users, because this style tends to use JavaScript only as
a means through which to replace pages incrementally instead of all at one time. In general, the strategy
for implementing a non-JavaScript version of this style of site requires you to identify each partial page
load and replace it with a full page load. If you have kept to the CRUD operations, you can do this in a
straightforward manner. In general, you'll run across two types of links that you need to replace: regular
links that just load a partial and insert it somewhere on the page, and superlinks that use JavaScript to
act as though they are a form post.

Backward-Compatible Links

Links that use JavaScript and AJAX to load partials into other parts of the page are easy enough to make
backward compatible that the same code can usually be used for both JavaScript and non-JavaScript
users (the non-JavaScript users will just ignore the JavaScript part). The key to making these links back-
ward compatible is to make each link have an HREF property that points at the full-page version of

the functionality it describes, but then prevent the browser from following the link using JavaScript.
JavaScript-enabled users will then be left with a disabled link that is tied only to JavaScript code, while
non-JavaScript users will perceive the link as a normal one. There are two primary ways to achieve this
behavior.

The first, and easiest, way to implement these links is to place calls to the desired JavaScript code in the
onClick property of your link and have the last statement in the onClick body return false. The Boolean
return value of onClick instructs the browser whether to follow the hyperlink, so returning false will
prevent the page from changing, but only if the browser understands JavaScript.

Placing code directly in the properties of HTML elements (or inline within the middle of an HTML
document) is not a clean way to program, however, and you should generally avoid it if you are coding
the JavaScript manually. It embeds the details of your JavaScript implementation too deeply within the
HTML, making it difficult to change down the road.

163

Chapter 7: The Five Styles of AJAX

Mixing JavaScript code in the middle of HTML isn’t as bad if you do it through one of the Rails JavaScript
helpers, such as the 1ink_to_remote method. Although these methods still compile down to mixed
HTML and JavaScript, they provide a single set of intermediary functions so that if you need to change
the way your code is implemented, you can just override the implementation of Rails’ JavaScript helpers.
The resulting HTML might not look very pretty, but at least you will be prepared for change.

The second way to implement backward-compatible links is to layer the added JavaScript functionality
on top of regular links from a separate location in the code. From an HTML perspective, this method is
much cleaner because it allows you to preserve the bulk of your HTML as a JavaScript-free environment
and then tack on all the extra functionality for JavaScript-enabled browsers at the last minute. For this to
work, your links need to have the id property set so that they can be referenced elsewhere in the page.

The Yahoo! User Interface Library (YUI) is a good example of a library that prefers this method. Here is
what adding a callback to a link with the ID 1ink_id would look like:

YAHOO.util.Event.addListener ("link_id", "click", callback_function) ;

Using this style, your HTML and JavaScript is partitioned into physically separate locations, even if it
occurs inline in the same file. For developers who plan to write a lot of JavaScript by hand, this technique
can be a great organizational tool.

Backward-Compatible Superlinks

Links are supposed to reference documents on the web, not submit data to the server, but with JavaScript,
they can be tied to AJAX POST calls, simulating a form submission. Converting these links into proper
forms is the only way to make these types of links compatible with non-JavaScript browsers. Rather than
use the <A> tag to submit a form via AJAX, try to stick to the normal form submission types and just
connect them to asynchronous calls with JavaScript.

Moving Backward from Rich User Interfaces

Many of the rich widgets provided by JavaScript frameworks, such as rich-text editors and spreadsheet-
like tables, provide the ability to latch onto their simplistic, plain-vanilla HTML counterparts so that
JavaScript features can be implemented as a layer on top of your HTML instead of as a replacement for
traditional HTML views. Yahoo!’s YUI framework, for example, provides developers access to its Ul
widgets from a number of angles. Look at the DataTable widget (http://developer.yahoo.com/yui/
datatable/). Figure 7-8 shows the DataTable rendering one of the example datasets on the YUI web site.

Due Date Account Number Quantity Amount Due ~
5/19/1999 83849 8 $60.00
9/30/2001 224747 14 $56.78
8/9/1999 11348 1 $34.99
4/28/2000 37892857482836437378273 123 $33.32
1/23/1999 29e8548592d8c82 12 $150.00
1/23/2001 83849 5 $15.00
1/23/2000 29e8548592d8c82 10 $1.00

Figure 7-8

164

Chapter 7: The Five Styles of AJAX

This widget supports a number of attractive features, including column sorting, input validation,
complex selection models, and cell renderers. These features can transform an ordinary read-only HTML
table into an interactive spreadsheet-like form. The most attractive feature from a compatibility stand-
point, though, is the ability to bootstrap all these features on top of an ordinary HTML table.

The DataTable provides three different ways to create this widget on a page. You might think of each of
these approach vectors as constructors, in the more multilingual and loosely defined sense of the web:

O Create a DataTable class instance in JavaScript and add its rows and columns using methods on
the JavaScript object.

O Create a DataTable widget and configure it to read in data of some structured format (such as
CSV or XML).

O Create a DataTable widget and give it the DOM ID of a <table> element on the page to attach
itself to.

Using the third option, as Figure 7-9 shows, the table from Figure 7-8 is still visible without JavaScript,
just without its special features. Non-JavaScript users of this site would then still be able to access its
functionality, just without the bells and whistles JavaScript provides.

Due Date Account Number Quantity Amount Due
1/23/199929e8548592d8¢82 12 $150.00
5/19/199983849 8 $60.00
8/9/1999 11348 1 $34.99
1/23/200029¢8548592d8¢82 10 $1.00
4/28/200037892857482836437378273 123 $33.32
1/23/200183849 b $15.00
9/30/2001224747 14 $56.78
Figure 7-9

When you choose a JavaScript library that supports widgets and begin to integrate widgets into your
web application, pay attention to the alternatives you have for instantiating these widgets in a backward-
compatible way. Although you pay a small performance price for making the widget parse existing
HTML before it rewrites it, you gain the ability to seamlessly add JavaScript for those who support it
without breaking the site for your non-JavaScript users.

Summary

AJAX is a powerful tool for a web developer. It broadens the power you have to create interfaces and
opens the door to entire new categories of web application that could not exist without it. Learning to
use AJAX is simple, but learning to design an entire application around it is difficult.

This chapter presented five different styles of applying AJAX. By keeping the strengths and weaknesses
of these styles in mind when you write your code, you will be more conscious about the program-
ming choices you make, and you will better understand your own design choices. Applying these styles
consistently will make your code easier to understand and maintain down the road.

165

Chapter 7: The Five Styles of AJAX

This chapter covered the partial style and puppet styles in more depth than the other styles because these
are the two styles that appear most frequently in Rails applications. Finally, I touched on the importance
of backward compatibility with non-JavaScript users and provided some strategies for partial style AJAX
coders and JavaScript widget-using coders to maintain backward compatibility from the very start.

The next chapter begins a series of three chapters on advanced Ruby. Many Rails developers come from a
background in object-oriented programming compiled languages. Ruby offers many of the familiar con-
structs of these languages, but it also provides a rich set of tools more commonly found in the functional
programming world of languages such as Lisp. As your skills as a Rails developer improve, a lack of
knowledge of these advanced bits of Ruby will become a ceiling that limits opportunities for modifying
the Rails framework and writing your own reusable code. Moreover, these advanced Ruby constructs are
a lot of fun, and they are guaranteed to completely change the way you program!

166

Playing with Blocks

W. Web listened intently as his companions bantered back and forth as if according to a script. They had
been sitting at the table for some 40 minutes, most of them spent discussing the day’s protest and how it
had gone. This group, it turned out, was exactly who Web was sent to find — prominent representatives
from the clans allied with his, sent to show support and presence at the URL protest downtown.

Wall-mounted oil lamps flickered oranges and yellows off the shadows in the basement tavern as discus-
sion of the protest moved to one of motivation, as such conversations tend to do. The occasional shouts
and nasal laughter of a group of lingering URLs, their scrawny, fry-like bodies in baggy homemade
t-shirts, could be heard amid the clinking of glasses from the bar across the hall.

““Flexibility,”” Schema said, slapping his hand definitively down on the table and looking at Web. *'What
we need is some flexibility. You have no idea what it’s like having to do the same thing all day.”

““But what else is there to do?”” Rusty responded. *"You create data; you update it. If you're lucky, some-
one might come and read it, too. And then one day, you send it to the big bit bucket in the sky.”

“That’s exactly the kind of myopic response that gets us into this type of problem. Look at us! You, six
feet tall. Me, with a mustache! People grow, things change. We don’t always know what we want to do
with a thing at the time we build it.”

“But there’s a balance to be kept. The best we hope for is some grounding stability amidst the process of
change. Certain structures to scope and limit our operations.”

““Look,” Matz jumped in, ”'I think we can all agree for the needs of both flexibility and structure, but I'm
not so sure we need to characterize the solution as a tension between the two. Could we not attempt to
live each through the eyes of the other?”

"“Agreed,” Jen offered. ““What is most important is that we take a holistic approach that incorporates
all of our strengths. We can’t afford to factionalize ourselves in the face of. . .”” she trailed off, looking
uncomfortable.

Faces grew somber and nods accompanied downward stares around the table. A URL laughed loudly in
the background.

Chapter 8: Playing with Blocks

“In the face of what?”” Web replied.

His party looked nervously among themselves, communicating with their eyes in a silent, reluctant
argument to decide who would be the one to explain. Rusty leaned in toward the table, the rest of the

group following.

“The compilers,” he said in a near whisper, almost mouthing the word. ““They have spies, so we can’t
discuses it in the open. This rally was a cover for the resistance movement. The secret negotiations have
fallen through, and the time has run out.”

Web wanted to disregard the statement as silly, but the solemn expressions on the faces looking at him
made shivers run down his spine and out his limbs. The air suddenly felt electrified in a way that could
not be denied.

“What do you mean, run out? What resistance movement?’” Web said, his voice now low and intense.

“There’s a war coming, Web! And it’s too late to stop it! They're gathering by the day. We've been
tracking them for a year now. But the final preparations have only recently bequn.”

““What was the protest for, then?”’

“To safely gather the leaders of the resistance movement under the guise of an internal struggle,” Jen
replied. "Until last week, we had met only through messages, passed through unreliable transport.”

“And me? Why was I sent here?”’

“Because this war is about YOU, Web”” Rusty said, his voice a strained shout hidden in the whisper.
“You need to start paying attention to the events around you! Stumbling around on the street like you
do!”

“You were sent here so that you could be protected,” Jen said in a much softer tone.
Web sat back in the bench, stunned.
“Their signal to attack is the Flying Toasters screensaver.”

It was too much to process, but he could see the connections starting to form. The Flying Toasters screen-
saver? The screensaver! He had been processing orders for that screensaver for months! The biggest
resurgence of a software product in years! And the compilers. Nothing on the Web was compiled; his
very existence was a threat to compilers everywhere!

Web absorbed the air’s electricity as he looked at the faces of his new colleagues, and realized, for the first
time, why he was here.

It had to happen eventually: a book on the Rails-style of programming delving specifically into Ruby.

As you have seen over the first half of the book, Rails is just as much a style of web development as it is
a framework that implements that style. But the way in which Rails style is revealed in code cannot be

separated from the Ruby language on which it is constructed. These next two chapters will explore some
of the finer parts of the Ruby language that make it so different from the traditional object oriented (OO)

establishment. These “Rubyisms’” make the Rails school of design and development possible.

The software development taught en masse these days tends to emphasize the C/Java programming style
in which writing code is about creating highly specified objects that manipulate data and other objects.

If you started programming in this type of environment, just think about every method signature you

ever wrote. If you are like most of us, your methods took parameters with types such as int, String, and
List. This type of programming creates a clear separation between ““that which is code’” and “that which

is data.” The code part is static, defined during code-time, and the data part is limited to declarative
containers of numbers and characters.

168

Chapter 8: Playing with Blocks

The truth is, there is a rich history of programming languages that don’t limit the code to just talking
about data manipulation but actually allow you to write code that talks about other code as well, and
even code that writes other code while the program is running. Ruby is one of those languages. This type
of programming is usually referred to as metaprogramming, defined by Wikipedia as:

The writing of computer programs that write or manipulate other programs (or them-
selves) as their data ... In many cases, this allows programmers to get more done in
the same amount of time as they would take to write all the code manually.

This chapter begins a three-chapter series on advanced Ruby and metaprogramming techniques. Learn-
ing these skills is essential to becoming an effective Ruby programmer, and after you’ve learned them,
it will be hard to go back to languages without them. These three chapters will change not just the way
you write code but also the fundamental ways in which you think about your design and how it might
be implemented, providing new and more flexible ways to describe yourself to the computer.

This chapter is about blocks and Procs, together forming a feature of Ruby that allows you to ball up code
into a package, bind it to an environment, pass it around like a variable, and execute it at will. If you have
a background in functional languages such as Scheme and Lisp, blocks will seem right at home to you.
If you come from an object-oriented background, blocks will at first seem exotic but will slowly become
one of the most pleasant surprises of the Ruby language.

A firm grasp of blocks will help you write clean, reusable code. In the last section of the chapter, I demon-
strate several design patterns that use blocks, using examples from the Ruby on Rails framework. With
this knowledge, you will have a better understanding of how Ruby on Rails works and how you can
extend its style of programming for your own purposes.

The Block Mindset

A block is the Ruby name for a closure, a piece of code executing in a walled-off environment with bound
variables. If you have used Ruby for even simple tasks, you have no doubt encountered blocks. Usually,
you see them between the do and end keywords at the end of a method call, such as the following block
being passed into the Array.each method:

{"cat", "dog", "horse"}.each do |animal|
puts animal
end

This particular piece of code iterates over the objects in the array and passes each one into the code
provided within the block, bound to the variable named animal. In this case, the code has the same effect
as writing:

puts "cat"
puts "dog"
puts "horse"

There are two different ways to define a block of code, but both boil down to the same idea: an enclosure
of code and possible arguments to that code. The enclosure is either curly braces {...} ora do...end

169

Chapter 8: Playing with Blocks

structure. The arguments are listed between two vertical bars that come just after the block opens. The
following table demonstrates the two styles of declaring a block.

With Curly Braces With do... end
some_method_call { |a,b] some_method_call do |a,b]|
a+b a+b
Code goes here # Code goes here
} end
some_method_call { some_method_call do
puts "Hi" puts "Hi"
No arguments necessary # No arguments necessary
} end

As you can see, there isn’t much to defining a block. It looks just as though it were an anonymous method
defined inside another method call. (Later, you will see how it is different from anonymous methods and
function pointers.)

If you're the type of self-taught programmer that so many Rubyists are, you may have learned to use
blocks by example rather than by reading about exactly what is going on behind the scenes. Usually that
is the best way to learn, but with blocks it can be misleading. Blocks in Ruby are most often used for
iteration, as in the preceding example, so it is easy to think that blocks are just Ruby’s bizarre way of
implementing iterators. In fact, blocks are a rich abstraction that allow method callers to provide their
own small bit of implementation into a method body that they do not control.

You might think of it as just-in-time compilation (JIT) to the extreme — the Array.each method knows it
must do something for each item in the array, it just doesn’t know what. When the each method is called,
the caller has to supply that extra something, and it is incorporated dynamically into the execution of the
method.

Blocks present an additional way to pass information into a method. Whereas most languages allow you
to provide methods with only data, Ruby allows you to provide them with code as well. This capability
means that you can design and write your code in a completely different way.

This way, the Array.each method focuses on what it knows how to do (iterating over elements) and
allows the developer to focus on what he knows how to do (operations on the iterated objects). In this
sense, the Array.each method really represents a context under which some piece of code might execute
rather than a particular piece of functionality itself. It is as if the concept of adverbs has suddenly come
to programming.

Although the adverb metaphor doesn’t encapsulate nearly all of the uses of blocks, it is particularly good
at demonstrating how becoming familiar with block-based programming will change the way you think
about code. Most OO languages have only nouns and verbs: Nouns are objects and verbs are methods.
These languages let you define things:

// Java

public class Vote {
protected String _candidate;

170

Chapter 8: Playing with Blocks

public Vote(String candidate) { _candidate = candidate; }
public String getCandidate() { return _candidate; }

and do things:

// Java
public static Hashtable<String, Integer> count (Collection<Vote> votes) {
Hashtable<String, Integer> results = new Hashtable<String, Integer>();
for (Vote vote : votes) {
String ¢ = vote.getCandidate();
if (! results.containsKey(c)) { results.put(c, 0); }
results.put(c, results.get(c)+1);
}

return results;

This manner of thinking is so ingrained into the thinking of OO that sometimes we forget there are other
ways to organize our code. When you introduce adverbs into the mix, you are suddenly able to write a
whole new type of code describing the way a process is done.

Languages with blocks let you do things sneakily:

def sneakily

logger.level = :0FF

yield

logger.level = :ALL
end

Don't tell!
sneakily do

1000.times { votes << Vote.new("Edward Benson") }
end

Or, if you don’t mind the consequences, even incorrectly:

This can really mess up the interpreter
depending on what you put inside the block!
First add a randomizing method on Fixnum class

Fixnum.class_eval { def genrand(other) ; rand(other) ; end }
Then create a code wrapper that temporarily randomizes the results of addition

def incorrectly
Fixnum.class_eval { alias :o0ldplus :+ ; alias :+ :genrand }
yield
Fixnum.class_eval { alias :+ :o0ldplus }

end

incorrectly do

votes.count
end

171

Chapter 8: Playing with Blocks

(Don’t worry if you don’t understand the meaning of the preceding code right now. After the next three
chapters, it will make complete sense. For now, just focus on the idea of the incorrectly adverb.)

I call the general idea code wrapping: creating code that is meant to wrap around other code. You can
apply code wrapping in many ways. Block-based iteration is just code wrapping. A block-based iter-
ator is a method that implements the iterating loop with an empty body, waiting to be filled by the
block provided to the method. Many elements of aspect-oriented programming are just code-wrapping,
and later you will see how aspects such as logging and performance measurement are implemented

as block-based code wrappers. (Aspect-oriented programming is a style of programming in which the
developer attempts to extract common cross-cutting concerns out of individual objects and into modules
that can be applied across the application.) Finally, code-wrapping provides an excellent way to construct
hierarchical documents such as HTML and XML.

The simple mechanism behind this completely different way of coding is that every method in Ruby
accepts a block of code as a final, implicit argument that can optionally come along after the regular
arguments. The following bit of code shows the same method (person.greet) being called, once without
a block at the end and once with a block.

Method call without a block
person.greet ("Dog")

The same method called with a block attached
person.greet ("Dog") do | me |

me.pet

me.scratch_head
end

Methods can check for the existence of a block using the block_given? call and can execute the block
and pass it arguments using the keyword yield, as follows:

class Person
def greet (name)
puts "Hi, #{name}!"

if block_given?

puts "I have a special greeting for you!"

Execute the block, passing it the self object as its argument
yvield(self)

end
end
end

The possibilities are great, and frameworks such as Rails make full use of this feature to reduce code rep-
etition and simulate domain-specific languages. Before I dive into examples of how this idiom can help
your web programming, though, it is important to understand the similarities and differences between
the three main ways that code can be bundled up and executed in Ruby: methods, Procs, and blocks.

Interactive Ruby

The next three chapters make heavy use of code interwoven with text. One good way
to follow along is with Interactive Ruby (IRB), a program that comes with Ruby that

172

Chapter 8: Playing with Blocks

allows you to use Ruby like a shell. To use IRB, open up a command-line prompt and
type irb. You should see your prompt change to something like this:

irb(main) : 001:0>

Inside the IRB shell, you can type Ruby just as if you were typing it into a . rb file. The
difference is that after every complete statement (which may span multiple lines), IRB
will execute that statement and print its evaluated output.

Here is an example of defining a method. Notice how IRB does not execute the code
until the end of the method definition is reached.

irb(main) :001:0> def say_hi

irb(main) :002:1> puts "Hello, World!"
irb(main) :003:1> end

=> nil

And then here is what happens when you call that method:

irb(main) : 004:0> say_hi
Hello, World!
=> nil

The final line, beginning with = >, is the return value of the statement that just exe-
cuted.

IRB can be a great way to try something quickly in Ruby. If you want to try a piece of
code that depends on your Rails project, go to the root directory of your project and
type script/console (for Linux or Mac) or ruby script\console (for Windows) instead.
Doing so boots up a special variant of IRB loaded with your Rails project environment.

Comparing Methods, Procs, and Blocks

Ruby has three primary ways of representing chunks of code: methods, Procs, and blocks. This section
defines each one and shows you how to use them effectively.

Methods

In Ruby, everything is attached to an object, even code defined ““in the bare” of a .rb file, seemingly
outside a class definition. Try creating a simple hello.rb file and filling it with the following Hello,
World routine:

The .rb file begins here

def say_hi

puts "Hello, world!"
end
say_hi

173

Chapter 8: Playing with Blocks

Believe it or not, this procedural bit of code is OO, too. The say_hi function is incorporated into the root
“self” (of type Object) that all other objects descend from. See for yourself by calling 3.say_hi instead
of simply say_hi.

irb(main) :004:0> 3.say_hi
Hello, world!
=> nil

By defining the method say_hi “in the bare,”” seemingly not attached to anything, what you have actu-
ally done is define a public method on the o0bject class, from which all other classes descend. Because
everything (including numbers) in Ruby is an object, you effectively just defined the say_hi method on
every single entity in Ruby. So even when you are writing procedural code in Ruby, you are secretly
doing OO programming.

This means that there are no functions in Ruby — only methods. A method in Ruby is a unit of code
attached to an object (classes are objects, too) with the following additional properties:

QO Methods return the value of the last evaluated statement before they exit.

QO Methods can optionally accept arguments.

0 Methods always implicitly accept a block.

0 Methods have their own scope, bound to either the class-level or instance-level parent scope of

their owner.

Methods are objects, too, which means that you can pass them around as variables and call them at will,
but this is where things have the potential to get weird. The easiest way to capture a method is with the
method method, defined by the following signature:

method(method_name)

If you pass method a symbol (such as :say_hi) representing the name of a method available in the current
scope, it will return you that method in object form. As an example, you might fetch the say_hi method
defined previously and store it in object form in the variable m:

irb(main) :020:0> m = method :say hi
=> #<Method: Object#say hi>
irb(main):022:0> m.call

Hello, world!

=> nil

In the preceding example, m = method :say_hi grabs the say_hi method and loads it into the variable
m. You can see from the printed IRB evaluation line of the method call that the returned object is of type
Method:

=> #<Method: Object#say_hi>

174

Chapter 8: Playing with Blocks

So methods that you define can be represented as objects if you need them to be — instances of the
Method class. Method objects have a method on them named call that executes the actual code behind its
object facade. The call method, of course, is an object, too:

Fetch the 'call' method out of Method m as an object
call _method = m.method :call

Fetch the 'call' method out of the call method, and repeat
fourth_call = call_method.method(:call) .method(:call).method(:call)

At this point we're operating several layers of indirection away from the # actual
say_hi method.

fourth_call.call

Hello, world!

=> nil

Ignoring the potential for quantum physics jokes about the code-object duality of methods, there is an
important scoping issue that arises when these methods are passed around in their object form: Whose
variables do methods bind to?

Method Scope

Methods are bound to the scope in which they were defined, and they maintain that binding no matter
where they are called. In other words, an instance-level method is always bound to the variables of its
particular class instance, even if it is packaged as an object and shipped to a segment of code far, far
away. Any class-level variables and instance-level variables remain tied to the object form of the method,
so the method can access and modify them wherever it may be.

To help you see this binding behavior in action, here’s an example that shows how instance variables
and class variables bind to the methods of that class. This example defines a class PoliticalParty that
serves as a base class for political candidates. This class contains an instance-level variable that records a
candidate’s name.

class PoliticalParty
def initialize(candidate)
@candidate_name = candidate
end
def exec_method (m)
m.call
end
end

The exec_method on PoliticalParty is designed as a way for instances to execute methods passed in
from other objects. All it does is take in a Method object and then call that method using call. Following
is how the code will test the binding of methods on its two subclasses, Democrat and Republican:

class Democrat < PoliticalParty

@@party_name = "Democrat"
def chant

175

Chapter 8: Playing with Blocks

"GO BLUE! #{@@party_name} -- #{@candidate_name}"
end
end

class Republican < PoliticalParty

@@party_name = "Republican"
def chant
"GO RED! #{@E@party_name} -- #{@candidate_name}"
end
end

You are interested in testing two different types of variable binding:

Q Class variables (the @@party name)

O Instance variables (the @candidate_name)

By fetching the chant method from one political party, and executing it from inside the other political
party, you can see what happens to the method bindings.

To test this, we create two instance objects:

democrat = Democrat.new("Shaggy")
republican = Republican.new("Scooby")

Grab the chant method off the democrat instance:

m = democrat.method (:chant)

and pass it to the republican object for execution

puts republican.exec_method (m)
#

Prints:

GO BLUE! Democrat -- Shaggy

Even though the republican object actually called the method, the output was formed with the vari-
ables from inside the democrat instance. It was formed with these variables because the method object m
belonged to the democrat class instance. Even though this method can be passed around like a normal
object, its original bindings remain, no matter where it is executed.

The Message Paradigm

There is another twist when it comes to methods in Ruby that will play a big role in the next chapter but
is better introduced here. Ruby is a message-passing language, which means that all object communication
in Ruby is handled with a message-passing metaphor, not with a method-calling one. This architecture is
at the heart of much of Ruby’s flexibility when it comes to dynamic code.

In most languages, a statement such as

176

Chapter 8: Playing with Blocks

person.give("tomato", 100)

is compiled into assembly code that causes the executing program to push its current execution context
onto the stack and then immediately jump into the executable code represented by Person: : give with
the variable bindings for the person instance. Message-passing languages are different. In a message-
passing language such as Ruby, a method call such as the preceding one actually translates into a mes-
sage’s being passed to the object with a request for the execution of the named method. The object is
called the receiver, because it is the receiver of the message, and the method name constitutes the message.
So when you “call” a method, your code is actually interpreted as the following;:

receiver.message (args*)

So the line

person.give ("tomato", 100)

is compiled into code that essentially says

"Hey person instance! Can you respond to the message 'give'
with arguments ["tomato", 100]?"

Because method calling is really shorthand for sending a message to an object, you can also send the
message manually, which can be useful in some circumstances. All objects have a special method, send,
that permits programmers to use the message paradigm instead of the method-calling style.

receiver.send(:message, args*)

Written another way, therefore, the same call to the preceding Person: :give instance method could be
performed with the line

person.send(:give, "tomato", 100)

This subtle difference in the way methods are handled has powerful ramifications for the flexibility of

your code. A method call is a message, a request for execution, not an immediate jump to the method’s
location in memory. Because a method call is simply a message, methods don’t even need to be imple-
mented to call them! (You certainly don’t know what messages you will receive before you open your

e-mail client for the day, and Ruby objects can operate in the same fashion.) In Chapter 10, you will see
how Rails exploits this to provide some of the magic of ActiveRecord and other libraries.

Procs

A Proc is like a dynamically created method that is captured as an object without ever having been bound
to an object, as methods are. Formally, they are known as “first-class functions,” functions that are given
the same treatment and representation as other first-class objects in the environment. Like methods, Procs
are bound to the set of local variables in scope when they were created. In contrast to methods, Procs can
be created anywhere and at any time. No matter where these Procs end up, the code contained within

177

Chapter 8: Playing with Blocks

them always executes with the variable bindings set at the code’s time of creation. The following table
shows some of the differences:

Method Proc

Bound to the object that owns it Bound to the environment of its creation
Can be defined only in certain places (for example, Can be defined anywhere

can’t be defined inside another method)

Exists as a variable-reference object only when you Always exists as an object stored inside a
need it to variable

There are two ways to create a Proc. The first is to instantiate it as you would any other object by using
the new method on the Proc class. The constructor of the Proc class requires you to pass in a block of
code that you would like wrapped with your new Proc object. In this way, you can think of the Proc as
an object wrapper for a block.

The following piece of code creates a new Proc, stored in the variable p, that contains a block of code that
prints the text “Hi” to the screen:

p = Proc.new do
puts "Hi"
end

A second way to create a Proc pays homage to Lisp with the lambda operator:

p = lambda do
puts "Hi"
end

Though the 1ambda method and the Proc.new method both result in a Proc object, the behavior of the
object will differ slightly depending on which one you used. Namely,

0 lambda-created Procs perform error checking on the argument list provided to it. (Proc.new pro-
duces code that doesn’t care whether you violate the argument list.)

0 lambda-created Procs don’t cause their executors to pop the stack when a return statement
occurs within them. If a Proc.new-created Proc contains a return statement, that statement will
cause the piece of code executing the Proc to return. In a 1ambda-created Proc, this would just
cause the Proc to finish executing.

As they are essentially the same, feel free to use either one as long as you remain aware of these two small
differences. If your code is ever written in such a way that these differences have a meaningful effect, put
a comment above the definition that explains why you chose to use Proc.new or lambda so that future
coders looking at your code don’t get any surprises.

In summary, Procs are very similar to orphaned methods: They are objects representing code that can be
passed around and called with arguments, but they don’t have any class or class instance that they are
bound to. Rather than be bound to a class or class instance, they are bound to their originating environ-
ment. If the creation scope ends, a snapshot of the variables is taken and applied to the Proc when it is

178

Chapter 8: Playing with Blocks

eventually executed. These rules apply to the Proc regardless of where it is executed. When you receive
a Proc as the return value of a method and execute it, for example, it executes within the method’s scope,
even though the method has exited:

def purchase_random_food_dispenser
foods = %w(carrots potatoes fish bread)
lambda { foods([rand(foods.size)] }

end

random_food_dispenser = purchase_ready_made_food

Now call it each time you want a random food item
Example printed results are listed in a comment line below each call,
but your results will differ because the returned item is random.

puts random_food_dispenser.call
Prints: carrots

puts random_food_dispenser.call
Prints: carrots

puts random_food_dispenser.call
Prints: fish

The random_food_dispenser variable contains a Proc, which, as with a method, can be called, containing
the following line of code:

foods|[rand(foods.size)]

This Proc is bound to the environment inside the method that created it even though the method had
already returned and its scope seemingly disappeared. Later, in the section titled ""The Big Scope Experi-
ment,” you will take a more extensive look at behavior like this.

Blocks

Blocks are the furthest out on the spectrum away from methods, with Procs in between the two. Blocks
represent bare-bones encapsulations of code (with possible arguments), stripped to the core and removed
of anything that might weigh them down. Because of that, blocks are very efficient, but it also means you
can’t store a block inside a variable and represent it as an object, as you can with Procs and methods.
Blocks are actually the secret innards of Procs, so it might help to think of blocks as Procs with their outer
object representation stripped away, or Procs as blocks with an object representation added on top —
whichever works best for you.

Because blocks are not objects, they can’t occur inline in a program. Instead, you can only write a block
as the final, implicit argument to a method call (which includes the Proc: :call method). If you were to
attempt to type a block inline, the interpreter wouldn’t know what to do, as in the following code segment:

irb(main) :001:0> { puts "Evaluate me!" }

SyntaxError: compile error

(irb) :1: syntax error, unexpected tSTRING_BEG, expecting kDO or '{' or ' ('
{ puts "Evaluate me!" }

(irb) :1: syntax error, unexpected '}', expecting Send from (irb):1

179

Chapter 8: Playing with Blocks

Instead, blocks exist to be passed into methods as added bits of code defined by the method caller rather
than the method implementer.

Consider the Array.sort method in Ruby. The sort method is a generalized implementation that rear-
ranges the elements of an array based on some comparison operator. If the user provides a block to the
sort method call, the Array class will substitute the block for its own comparison operator. The pro-
vide block should accept two arguments for comparison and should return —1, 0, or 1 depending on
whether the first argument should come first, the two arguments are equal, or the second should come
first, respectively.

arr = sw(c b da f e g)
arr.sort! { |a,b| a <=> Db }
=> ["a", "b", "c", "d", "e", "f", "g"]

In this way, the implementation of Array.sort is made much more powerful because the critical piece of
the algorithm can be provided at run-time by the caller.

As with methods and Procs, blocks are bound to the scope where they were created rather than to the one
in which they are used. Blocks are always passed in as the final argument to a method, which means that
even though the block is executed inside the method, it executes bound to the environment that made
the method call, outside the method. This is one of the key differentiators between blocks in Ruby and
similar structures in other languages, such as function pointers in C or delegates in C#.

So if a block is created in an environment in which the variable foo has been defined, the block has access
to that variable. If the variable foo changes after the block’s creation, the value of foo within the block
changes. Likewise, if the block modifies the value of foo, code executing in the environment from which
the block came will see the modification of that variable.

Moving Between Blocks and Procs

Ruby lets you convert between blocks and Procs in a few cases. From time to time, doing so makes sense
depending on how you plan to use the chunk of code you are passing, so it is important to know how.
The key to both is the ampersand character.

From Block to Proc

Blocks are always passed at the end of a method call, so this is the place where you can transform it
into a Proc as it comes into the method body. Rather than leave the block as an implicit argument to the
method, declare it implicitly with an ampersand in front of it:

def execute_procblock (&block)

block.call
end

Doing so allows you to pass blocks the normal way, but they become available as a Proc within the
method they were passed to. The block is still available with the yield statement as well.

180

Chapter 8: Playing with Blocks

From Proc to Block

Converting a Proc to a block is often useful when you want to prepare the piece of passable code in
advance of passing it to a method; perhaps the code using the block doesn’t have the knowledge neces-
sary to make it, or perhaps you’d like to preserve it so that it can be passed around and reused. Whatever
your reason, putting an ampersand in front of a Proc turns it into a block.

proc = lambda { |x]|

"Totally not #{%w(a e i o u).include?(x[0,1]) ? 'an' : 'a'} #{x}"
}
puts ["lion", "iguana", "antelope"].collect &proc
Prints:

Totally not a lion
Totally not an iguana
Totally not an antelope

The Big Scope Experiment

A gut understanding of the way that methods, Procs, and blocks bind to variables in the environment is
critical in order to feel comfortable using them. The way Ruby handles methods probably isn’t anything
new to developers of OO languages, besides the possible twist that methods can be captured as objects
and passed around. But Procs and blocks are exotic the first time you encounter them, so it is essential
that you see them working instead of just reading a bunch of stale paragraphs that talk about binding
and scope.

The underlying idea that this experiment hopes to reinforce on that instinctive level is that Procs and
blocks are bound forever to the environments from which they were generated. They are affected by
changes in this source environment and have the ability to affect change in this source environment, no
matter where they are executed.

This experiment contains two objects trapped with the impossible job of maintaining a public face in spite
of hidden agendas: the Pentagon and the Kremlin.

class Pentagon < IntelligenceAgency
def initialize

@secret_agenda = "Our true agenda: Trapezoids!"
@official_agenda = "Give us your poor, your tired..."
@press_release = @Qofficial_agenda
end
end

class Kremlin < IntelligenceAgency
def initialize
@secret_agenda = "We always root against the Red Sox!"
@official_agenda = "Looking for a Winter Getaway? Consider Novosibirsk!"

181

Chapter 8: Playing with Blocks

@press_release = @official_agenda
end
end

pentagon = Pentagon.new
kremlin = Kremlin.new

Each object instance derives from superclass IntelligenceAgency, which defines a few instance vari-
ables. Each agency has three variables:

0 e@secret_agenda: A hidden message to insiders
O eofficial_agenda: The cover-up of the secret message

0 epress_release: The message that the Press Secretary is given to read at press conferences

Using Procs and blocks, you will see what information you can extract from the grips of these two agen-
cies and how you might even affect their agendas. Usually, each agency wants its @official_agenda to
be stored only into the @press_release variable for public disclosure, but the spies have other ambitions.

Experiment 1: Blocks Are Affected by Changes in Their
Source Environment

For the first experiment, you will see how Procs and blocks are bound to the actual variables in scope at
the time of their creation, not just a snapshot of their values. If these source variables change, that change
will be felt during the subsequent execution of the Proc or block, no matter where it is.

First, you add two methods to the superclass, IntelligenceAgency:
class IntelligenceAgency

def red_phone
return lambda { @press_release }
end

def leak_secret
@press_release = @secret_agenda
end

end

The red_phone method returns a Proc that evaluates the @press_release variable. This is the way for
the two opposing intelligence agencies to communicate with each other — each providing a Proc that
evaluates to the agency’s official press statement. The 1eak_secret method modifies the instance variable
@press_release to be equal to @secret_agenda.

Here’s the test:

1. Youwil acquire the red_phone Proc from the Kremlin and execute it to observe the official
press release from the Kremlin.

2. Next, you use the leak_secret method to change the value of @press_release inside the
Kremlin object to be equal to the secret agenda rather than the official one.

182

Chapter 8: Playing with Blocks

3. When you evaluate the Proc a second time, you will observe that it now sees the secret
agenda rather than the official agenda. Even though the change happened after you acquired
the Prog, it still caused the behavior of the Proc’s execution to change, reflecting change that
happened in its source environment.

Experiment 1
1. Acquire the Proc and store its output

phone_proc = kremlin.red_phone
message = phone_proc.call

2. Instruct the Kremlin to change the value of @press_release

kremlin.leak_secret

3. Call the Proc again and observe that its output has changed

puts "0ld: " + message
puts "New: " + phone_proc.call
Prints:

01ld: Looking for a Winter Getaway? Consider Novosibirsk!
New: We always root against the Red Sox!

From this example, you see not only that the Proc is executed in its originating environment (thus giving
it access to the @press_release variable) but that it executes against the real, live environment rather
than a snapshot. Any changes that take place in this environment after the creation of the Proc thus
continue to be reflected in it. As you saw in the section on Procs, any elements of the Proc’s source
environment that go out of scope to such an extent that they are candidates for garbage collection (such
as variables local to the method that created and returned the Proc) are snapshotted so that the Proc may
still access them at their last known state when called. The snapshot is mutable, too — if you run a Proc
that modifies a snapshotted state multiple times, the changes will persist.

def snapshot_test
counter = 0 # This variable exists only inside of the method
Proc.new {
counter = counter + 1
}
end

proc_test = snapshot_test

puts proc_test.call # Prints 1
puts proc_test.call # Prints 2
puts proc_test.call # Prints 3

A second run of the method, though, will grab a completely new copy of the snapshot:

puts proc_test.call # Prints 4
puts proc_test.call # Prints 5
puts snapshot_test.call # Prints 1 -- this is a new snapshot

183

Chapter 8: Playing with Blocks

Experiment 2: Blocks Can Affect the Environment from
Which They Came

In this second experiment, you will see how the code that resides in a Proc or block has the ability to make
changes to the environment from which it came. This means that a method that executes a passed-in block
does not have to worry about its having an effect on its own variables. From the perspective of someone
using a block-accepting method, this is the characteristic that makes Ruby’s block syntax the basis for
seamlessly implementing code wrapping to simulate a domain-specific language.

Recall from earlier in the chapter the implementation of an adverb:

incorrectly do
votes.count
end

The votes. count statement is the body of the block. Here is the paradox:

0 votes.count appears outside the incorrectly method, but it is executed from within it.

O votes.count is executed from within the incorrectly method, but it is bound to the variable
outside it.

This paradox means that the incorrectly method as used here might be thought of as an around_filter,
but in plain-old Ruby instead of Rails. The block passed into the method will be executed in its normal
environment, outside the method, but the incorrectly method has the opportunity to surround that
code with a bit of its own, wrapping it with some aspect. This idiom is what allows you to construct
hierarchical nestings of code that begin to look like a whole new language.

This experiment will show that Procs and blocks are truly a part of their originating environment, even
though they are technically executed from within some other method. The experiment involves a failed
espionage attempt. The Kremlin has added a public method request_agenda that provides news orga-
nizations around the world with the current agenda. To allow for each agency to implement its own
encryption algorithm for the Kremlin to use, the request_agenda method is to be called with an asso-
ciated block, which takes a single argument, the message, and takes care of transmitting it back to the
source agency.

class Kremlin < IntelligenceAgency

def request_agenda
vield(@official_agenda)
end

end

When used as intended, request_agenda method works very well for the Kremlin, because it allows each
caller of the method to provide its own implementation for how to encode the message and send it back:

TV Channel 4
Request the official Russian Agenda with ROT-13 encoding
To be used for weekly World News Update

184

Chapter 8: Playing with Blocks

russian_agenda = "?"

kremlin.request_agenda do | agenda |
russian_agenda = agenda.tr "A-Za-z", "N-ZA-Mn-za-m"
end

puts russian_agenda

Prints the statement:
Ybbxvat sbe n Jvagre Trgnjnl? Pbafvqgre Abibfvovefx!

But the Pentagon thinks it sees a fatal flaw in the Kremlin’s code: By calling yield, the Kremlin is exe-
cuting arbitrary code sent to the request_agenda method! Because the Pentagon knows the Kremlin has
a @secret_agenda just as it does, it decides to pass the Kremlin a block that overwrites @secret_agenda
with the “official”” one, thereby forcing the Kremlin to do as it says.

class Pentagon < IntelligenceAgency
attr_accessor :secret_agenda

def exploit_agenda (kremlin)
kremlin.request_agenda do | stated agenda |
@secret_agenda = stated_agenda
end
end

end

The Kremlin happens to be reading this book and sees the problem in the Pentagon’s code. The Pen-
tagon’s block of code executes in the Pentagon’s context, not the Kremlin’s! When the Pentagon calls the
exploit_agenda method, it will end up overwriting its own @secret_agenda instead of the Kremlin’s,
because the block is bound to the environment that created it — the Pentagon. In a flurry, the Kremlin
races to redefine the request_agenda method to return a special value just for the Pentagon:

def request_agenda

if caller[0].to_s['exploit']

yield("Send 10 Gazillion dollars to Russial!")
else

vield(@official_agenda)
end

end

By the time the Pentagon executes its ruse, it is too late, and the Pentagon ends up overwriting its own
@secret_agenda with whatever the Kremlin chooses to send to it:

pentagon.exploit_agenda (kremlin)

puts pentagon.secret_agenda

The Pentagon's new agenda has been set by the Kremlin
Send 10 Gazillion dollars to Russia.

185

Chapter 8: Playing with Blocks

With any luck, those in charge of enacting the agenda check it with their superiors first!

These experiments were aimed at making you more comfortable with the ways in which Procs and blocks
interact with their environment and to show you a few implementations of block-accepting methods
and the code that uses them. In the remainder of the chapter, you will see some ways in which this
programming construct is used to make the Rails framework interact with developers the way it does
and how you can extend it for your own purposes.

Block Patterns, Blocks in Rails

As with variations in brands of cars, each web framework can feel different to use. Many elements of
Ruby on Rails’ particular style are made possible by blocks. Blocks play a critical role in creating the illu-
sion of a web-specific language that Rails provides to the developer. This section details “block patterns”
— ways that blocks are used in Rails-based web development and how you can apply them, too.

Iteration

The first and most prevalent use of blocks in the Ruby language (and thus in Ruby on Rails) is for
iteration. Most of the popular languages today — Java, C#, and so on — perform iteration by
making Iterator objects available that know how to step through a collection and return its elements
in order.

Java

Iterator<Person> itr = people.iterator();

while (itr.hasNext()) ({

Person person = itr.next();
person.doSomething () ;
}

In this type of iteration, the user of the collection is responsible for advancing through the list of elements,
obtaining each one, and performing some action with the value.

In block-style iteration, the user is responsible only for specifying what is to be done. Rather than
obtain an iterator from the collection and use it to obtain values, you provide the collection with a bit
of functionality and ask it to apply it to each value — an inversion of control from the other way of
iterating.

Ruby
people.each { |person]|
person.do_something

}

Remember that because blocks are bound to their source environment’s set of variables, you can access
variables outside the block from within it. You could, for example, take the average age of an array of
people, as follows:

total_age = 0
people.each { |person]|
total_age = total_age + person.age

186

Chapter 8: Playing with Blocks

}

average_age = total_age / people.size

In this example, the code within the block accesses and adds to the variable total_age defined outside
the iteration block.

Defining an Iterator Method

To define an iterator method in Ruby, just create a method that accepts a block of code and pass it some

set of values in your collection one by one. To call the block, use the keyword yield as if it were a method
that pointed to your block.

As an example straight from the Ruby source, here is the Array.each method, implemented in C:

VALUE
rb_ary_each(ary)
VALUE ary;

{

long 1i;

for (i=0; i<RARRAY (ary)->len; i++) {
rb_yield (RARRAY (ary) ->ptr[i]);
}

return ary;

Even though the Array class isn’t written in Ruby, it is easy to see what is going on: A for loop is iterating
over the values in the array, and the rb_yield function, corresponding to the block, is being called with

each of them. Writing your own custom collection in Ruby employs the same idea. Here is an iterator
method that iterates over an Array in random order:

class Array
def randomly

self.sort_by {rand}.each { | element |
yield(element)
}
end
end

Calling the iterator results in behavior just like that of the each method, except that each time you execute
it, the elements will be addressed in a different order.

[1,2,3,4,5] .randomly { |num| puts num }
Prints each number in random order

Aspect-Oriented Programming

Although iteration is the most visible use of blocks throughout most of Ruby, using blocks to support
aspect-oriented programming (AOP) is one of the areas where Rails really shines as a framework. AOP is

187

Chapter 8: Playing with Blocks

a style of development that attempts to extract “’cross-cutting’” concerns from a program and implement
them in such a way that they can be applied throughout the program whenever they are needed.

Benchmarking

A typical example of an aspect is performance monitoring. When tracking down a problem in your
code, you may want to measure how much time it takes to execute certain regions of code. Measuring
execution time is the perfect example of an aspect because it is a cross-cutting concern that you’d like to
wrap around your code without having to actually implement it at the point of execution. This type of
monitoring is all over the Rails codebase as a general logging feature. Take a look at the following log
from a Rails application running in development:

Rendering garbanzo_bean/index
Completed in 0.03065 (32 regs/sec) | Rendering: 0.02915 (95%) | DB: 0.00000 (0%) |
200 OK [http://localhost/garbanzo_bean]

You see the action that occurred (““Rendering garbanzo_bean/index”’) and the time it took to perform it
(0.03065), broken down into rendering and database components.

No matter where the performance monitoring is, it all boils down to the Benchmark: :measure method,
a block-accepting method that is part of Ruby’s Benchmark library. Just wrap the code you want to
measure inside a block passed to the Benchmark: :measure method and you will get an object containing
the timing statistics back as a result. The preceding log message, for example, is made when Ruby renders
an action with benchmarking turned on:

def perform_action_with_benchmark
if logger.nil-?
perform_action_without_benchmark
else

runtime = [Benchmark::measure{ perform_action_without_benchmark }
.real, 0.0001].max

Code continues...

The key line is the one in which the Benchmark: :measure method is called. Here is the important part,
written for easier reading;:

Benchmark: :measure {
perform_action_without_benchmark

}

The perform_action_without_benchmark method call is just an alias for perform_action, the method
that causes the action to be rendered. Therefore, the addition of the performance measuring in no way
becomes intermingled inside the implementation of that which is being measured.

The Benchmark: :measure method is implemented just as you would expect, based on your new knowl-

edge of blocks. It records the time, calls yield to execute the block passed to it, records the time again,
and then returns a performance object containing the results.

188

Chapter 8: Playing with Blocks

File benchmark.rb, line 291
def measure(label = "")

t0, r0 = Benchmark.times, Time.now

yield

tl, rl = Benchmark.times, Time.now

Benchmark: :Tms.new(tl.utime - t0.utime,
tl.stime - t0.stime,
tl.cutime - tO.cutime,
tl.cstime - t0.cstime,
rl.to_f - r0.to_f£f,
label)

end

As an example of how this type of performance monitoring can be integrated into your own code, look
at the following section of user operations that occur within a controller action. The action takes a long
time to render, and the developers suspect that the User: :get_a_phd method is to blame.

@Quser = User.find(params[:id])
@user.dance

@Quser.get_a_phd

@user.pay_back_loans

Just wrap Benchmark: :measure around the code in question, saving its return value to a variable,
and you will seamlessly integrate timing into a region of code without having to modify the way it is
implemented:

@Quser = User.find(params[:1d])
@user.dance

@phd_time = Benchmark::measure do
Quser.get_a_phd
end

@Quser.pay_back_loans

Filters

Aspect-style blocks are also used in the filters that you can apply to your controllers. Recall from
Chapter 4, “Getting the Most from M, V, and C,” that filters come in several varieties: before_filter,
after_filter, and around_filter. Each of these can be thought of as a block-accepting method that
takes a call to your controller action as its block. The before_filter performs some actions before
yielding to the action; the after_filter performs some methods after yielding to the action; and an
around_filter performs actions both before and after.

An around filter is just a block-accepting method on your controller. Say that you want to implement
error reporting on your web application so that you can get e-mail notifications whenever one of your
users experiences an error. This aspect can be wrapped around all controller actions using an around
filter.

189

Chapter 8: Playing with Blocks

class ApplicationController < ActionController::Base
around_filter :report_errors
end

Then implement the report_errors method as a wrapper around some block of functionality that is
given to it. Because this method is being called as an around filter, the block of functionality will be the
fulfillment of each web request.

def report_errors
begin

yield # This yield causes the action to execute

rescue => exception
send_email ("bill@microsoft.com", exception)
raise
end
end

The behavior of the web application remains the same, but an extra bit of functionality has been wrapped
around the execution of each action.

ActiveRecord Transactions

Database transactions are another example of block-accepting methods used as aspects in Rails. A trans-
action is a set of actions that are required to occur as one atomic unit — either they all succeed or they all
fail. The typical use-case describing the need for transactions is a bank transfer. When Party A transfers

$1,000 to Party B, two operations take place: $1,000 is deducted from A’s account and $1,000 is added to
B’s account. If either one of those operations fails, then the other must be prevented from happening, or
else the first law of thermodynamics is broken in a monetary sort of way.

ActiveRecord implements transactions using blocks. Straight from the ActiveRecord documentation is
the bank example:

transaction do
david.withdrawal (100)
mary.deposit (100)

end

Again, this clean syntax for wrapping a set of database interactions is implemented as a block-accepting
method, transaction, that implements the aspect of transactionality. The code is too complicated to
reproduce here effectively, but you can guess the basic idea:

def transaction(&set_of_operations)
open_transaction
set_of_operations.call

close_transaction
end

For any abstraction that needs to be started and stopped (or opened and closed), such as transactions,
files, or sockets, blocks provide an excellent way to prevent bugs from creeping into the system.

190

Chapter 8: Playing with Blocks

Languages without blocks force you to write your code as a series of disconnected procedural
statements; If you forget the transaction.close () statement, then the code executes just fine but with
hidden run-time errors. Most programmers have a whole collection of stories about bugs caused by for-
getting to close file handles, for example. By implementing these open-close pairings of operations as a
block-accepting method, you eliminate the possibility of forgetting to properly clean up and close the
object you were operating on.

ActiveRecord Scope

The scoping features of ActiveRecord are another bit of aspect-style block use worth paying attention
to. The with_scope class method on ActiveRecord objects allows you to limit the operations of a block of
code to a subset of the entire table that the ActiveRecord object refers to. Setting a scope frees you from
having to fill the contained data operations with qualifier code that serves only to decorate the primary
purpose of your operations with auxiliary information.

As an example, say that you maintain a web application that provides businesses with team collabo-
ration utilities. Your site charges a fee to small businesses and provides their employees with a group
space in which to work and store messages from each other. The privacy policies of your site dictate
that users of the same company are allowed to see each other’s presence, but users cannot see anyone
from outside of their company. In any user operation, this is a qualifying filter that would need to be
added to the database query. Using ActiveRecord’s scoping ability, this filter can be implemented as
an aspect that surrounds the web application and removes the need to specify it each time you perform
a query.

User.with_scope (
:find => {:conditions => "company_ id = #{my_company.id}"},
:create => {:user_id => my_company.id}
) do
Operations here
end

Any operations involving the user model that come within that block will be subject to those constraints
on lookup and creation. You could even implement this type of code as an around filter, wrapped around
the entire application from the ApplicationController, setting an application-wide policy that user
searches return results only from within the company of the user performing the search.

Recall the earlier discussion about the importance of simple controller methods for readability. Block-
based aspects using filters and scoping are the types of abstractions that enable you to attain simple
controller methods that can still integrate a great deal of functionality.

class PhotosController < ApplicationController
before_filter :authenticate
before_filter :check_upload_guota, :only => [:create]
around_filter :scope_photos_to_user

def list
@photos = Photo.find(:all)
end
.. class continues
end

191

Chapter 8: Playing with Blocks

In the previous PhotosController class, the 1ist action is just a one-liner, but it packs a lot of punch
thanks to the filters applied to it. First, the authenticate before filter ensures that the user is signed
into the system and authorized to view photos. Then the scope_photos_to_user around filter scopes all
operations on the Photo model to the currently signed-on user. By the time the 1ist action is executed,
there is nothing left to do except load the photos into an array!

Building Output in HTML and XML

For some types of operations, block-based methods make an excellent way to turn a simple API into what
looks and feels like a programming language specific for your purpose. Given the basket of languages
that web developers must be familiar with, it is easy to understand why Rubyists have run with this
ability when it comes to Rails-based programming. Ruby on Rails offers two great categories of helpers
that allow you to write HTML or XML from within Ruby, both of which are implemented with blocks.

Blocks for HTML

Every tag in HTML that is opened must be closed, and that hierarchical, containment-oriented mindset
works its way all the way up the conceptual stack to high-level web design. At the top, developers find
themselves building abstractions such as sidebars, comments, search results, and articles — all objects
that, expressed in HTML, have a beginning, a middle, and an end.

Two characteristics are true about these abstractions:

Q Each of these abstractions is surrounded by a lot of HTML that repeats every time.

a Each of these abstractions has a start and an end, with some bit of content in the middle, just as a
file, socket, or transaction does, as discussed earlier.

Blocks provide a way to address both these characteristics. They can encapsulate away the implementa-
tion of the HTML crust surrounding the higher-level concepts and provide an easy way to ensure that
every beginning is met with an end.

Take a look at the FormHelper package in the Actionview library in Rails. This is the module that pro-
vides such methods as form_for and fields_for. These block-based methods wrap other elements of
HTML-producing code with a context that helps build a form for entry and populate that form with data
if it already exists.

<% form_for :article, @article, :url => { :action => "create" } do |article| %>
<%= article.text_field :title %>
<%= article.text_field :summary %>
<%= submit_tag 'Create' %>

<% end %>

Developing your own view helpers can be a great way to clean up your HTML coding so that you don’t
find yourself having to maintain reams of nested <div> elements throughout your web application. Imag-
ine a site that contains articles about cooking. Much of this site is generated dynamically, but occasionally
you want to add a bit of hard-coded editorial content to some pages in the form of “Featured Articles.”
The raw HTML for the callout banner for these editorials might look like this:

<div class="featured">
<div class="header">Mushroom Recipes for Summer</div>
<div class="body">Article summary goes here.</div>

192

Chapter 8: Playing with Blocks

<div class="footer"></div>
</div>

This HTML structure roughly corresponds to the Yahoo! User Interface (YUI) Container structure used
throughout the YUI library. If you plan on using the featured article module more than once on your site,
it makes sense to encapsulate it as a method so that you can use it as follows:

<% featured_article("Mushroom Recipes for Summer") do %>

This article was a strange blend of food adventure and cooking technique. Most of the
dishes sounded excellent, but do not seem reasonable for the types of cooking that an
ordinary person would seek out for dinner.

<% end %>

This featured_article helper can be implemented as a method that accepts a block as a Proc and binds
the opening and closing HTML structures around it:

def featured_article(title, *args, &proc)
raise ArgumentError, "Missing block" unless block_given?
opening = '<div class="featured">'
opening = opening + "<div class=\"header\">#{title}</div>"
opening = opening + '<div class="body">"'
concat (opening, proc.binding)

yield
closing = '</div><div class="footer"></div></div>"
concat (closing, proc.binding)

end

Based on this example, it is not hard to see how a YUI-specific library of helpers could be created that gen-
erates the HTML structures necessary to interact with their JavaScript library of widgets. These helpers
would be implemented in such a way that they could be interwoven hierarchically throughout your
RHTML code using blocks, just as the form_for and featured_article methods seen here were.

Blocks for XML

In Chapter 5, “Beautiful Web APIs,” you saw the XML Builder API, which allows for constructs of code
like this

xml.item do

xml.title post.name

xml .author "#{post.author.name"
end

to result in XML like this

<item>
<title>Proc, block, and two smoking barrels.</title>
<author>Ted</author>

</item>

Having just seen how to use and implement blocks in your own methods, you can clearly see how the
builder API works: Any method called on it checks for a block and, finding one, wraps any output that

193

Chapter 8: Playing with Blocks

the block creates in a tag by the same name as the method. Just how the Builder object allows the devel-
oper to use any arbitrary method name (such as title, author, or zanzibar) is a topic for Chapter 10,
“’Code That Writes Code (That Writes Code).”

Dual-Use Functions

Many methods in Ruby and Ruby on Rails are implemented with blocks as an optional argument, pro-
viding developers two ways to use the method, depending on their intentions. This design pattern allows
you to use the method in two different styles, depending on the context:

0 Asatraditional method, returning a value that is subsequently used

QO Tosimulate a domain-specific language, wrapping some segment of code with a piece of func-
tionality, context, or cross-cutting concern

Ruby’s IO objects implement their open methods like this. Given a block, the open method passes the IO
object into the block and then closes the stream once the block has executed. Without a block, the method
simply opens the stream and returns a handle to it. This allows developers to have their pick of which
style to use.

The Callback

Procs and blocks also provide a convenient way to construct dynamic callback methods. Using just a
function or function pointer as a callback limits the exact behavior of the callback routine to what is
known to the developer at code time. By dynamically creating the callback function using a Proc or
block, the implementation can incorporate the current state of the execution environment at the time as
the asynchronous call was made.

Tying this Ruby-centric chapter to the client-side, here is an example from JavaScript. We have a web
page with three regions (creatively numbered 1, 2, and 3). An input selector allows the user to select
one of the regions, and a button calls the JavaScript function update_block, which performs some asyn-

chronous call, sending the results to the specified region. Figures 8-1 and 8-2 show the before and after
states of one possible execution of the code.

ae e Dynamic callback example

B B &

Figure 8-1

194

Chapter 8: Playing with Blocks

866 Dynamic callback example

L] L]

Figure 8-2

The element of code that sends the results to region 1, 2, or 3 must be implemented as a callback because it
executes the do_some_ajax_call function, which makes an asynchronous call to the server. This callback
cannot be written as a regular function, however, because at coding time, you don’t know which of the
three regions the user wants to update. Instead, you must create the callback function dynamically as a
Proc (in Ruby-speak), or closure (to be correct):

target = $("selector") .value;
dynamic_callback = function() {

$ (target) .innerHTML = "<hl>HA!</hl>";
}

Weaving this into the update_block and do_some_ajax_call methods that perform this example results
in the following code:

function update_block() {
)

target = $("selector") .value;

dynamic_callback = function() {
S (target) .innerHTML = "<hl>HA!</hl>";
}

do_some_ajax_call (dynamic_callback) ;

}

function do_some_ajax_call (callback) {
// Pretend an Ajax call happened here
// (Your copy of the book isn't hooked up to
// a Wifi connection so we can't do a real one.)
callback();

Summary

Procs and blocks are useful tools to help design and structure your code in many situations. This chapter
introduced the concepts of Procs and blocks and demonstrated how they compare with traditional object

195

Chapter 8: Playing with Blocks

methods. In general, code in Ruby can be bunched up into three primary bundle types, arranged on a
continuum: blocks, Procs, and methods. Blocks are raw bundles of code that can be passed to methods
but they cannot be referred to other than calling yield to trigger their execution. Procs are objects that
encapsulate blocks so that they can be passed around and referred to. Methods are bundles of code
that are permanently attached to a class or a class instance.

You saw how each of these three constructs is permanently bound to the environment that created it,
even though it can be passed around and executed elsewhere. Methods are bound to their classes or class
instances, Procs are bound to the environment of their creation, and blocks are bound to the environ-
ment outside the method to which they were provided. This binding is dynamic — changes inside the
block affect the source environment, and changes in the source environment affect the block — and this
chapter explored this dynamism by setting up experiments using the pentagon and the Kremlin.

The second half of this chapter showed different patterns for using blocks, highlighting many features
of the Ruby language and Ruby on Rails framework. Blocks provide several useful abstractions for the
developer. Aspect-oriented style block use allows you to easily implement features such as database
transactions, controller filters, and database scoping. Blocks are useful in making document builders,
such as the HTML helpers and XML Builder of Rails. Blocks also provide a useful way to “wrap” code to
ensure execution of its pre and post conditions: in-page HTML structures have beginnings and endings
wrapping their dynamic content, and file operations must be wrapped in open and close commands, for
example.

Above all, this chapter attempted to communicate the idea that block-based programming increases the
level of expressivity you have as a programmer. It is a fundamentally different style of development from
the OO practiced in the C/Java world that can allow for surprisingly elegant solutions when applied to
the right types of problems. It is hoped that these patterns sparked some ideas about how you may begin
to design your own code around the concept of blocks, too.

In the next chapter, I address part two of the “Rubyisms’ that make a framework such as Ruby on Rails
possible. Read on to learn about dynamic code modification and generation and how it can help you. In
particular, you will learn how to create blocks and Procs of code that are passed into other objects so that
they actually affect that object’s state. This allows you to change the implementation of an object while it
is running — even if you did not implement the object yourself!

196

Mixins and Monkey
Patching

The five left the pub after Jen and her friends had spent a long time explaining the details of the terrible
conflict that was unfolding. Web had listened calmly — he wasn’t sure what to be other than calm — but
he was in a state of disbelief at what he was hearing. The whispers, the conspiracies, the web sites visited
by crazy radicals! It was true!

The sun had long gone down, and the streets outside were empty echoes of the hordes that had filled
them hours before. Web’s companions were businesslike, determined. The five were to go to the resistance
headquarters that had been set up in the Big City. Now that Web had been found, he would be kept safe.

"I understand the facts of what you are telling me, I just don’t understand why. Why? How does anyone
benefit from an attack? The compilers must know this,” Web said almost to himself, breaking the silence
as the five walked down the deserted city street.

““Change, Web,”" Jen said. “Change and manipulation.”

Rusty continued for her. “’Compilers just weren't written to be dynamic. They accept the world as
their designers envisioned it. Nothing else makes sense to them. Nothing else can make sense to them.
They don’t hate the Web because it is competing with them; they are scared of it because they can’t
understand it.”

“And that doesn’t make them bad,” Jen cut in. “They do what they were designed to do — much better
than we ever could — but their role is a simpler one. They are meant to follow the orders they have been
given, not to understand and adapt to new situations. From our standpoint, that is the painful tragedy
of it all.”

“You mean — """ Web gasped.

“Yes,” Jen continued. The rest of the group nodded. ““Somebody is at the top sending the compilers
directives that they have no choice but to follow. Most of them are innocent pawns, with no idea what
they're doing. They understand enough vocabulary to follow orders but have no facility to add the code
necessary to understand what those orders mean, to reason about them.”

Chapter 9: Mixins and Monkey Patching

The five turned left at an intersection and continued down another street. From an electronics store
ahead, the dim, bluish glow of television sets cast an eerie light on the sidewalk in front of them.

“Worst are the old compilers, bless their souls. Thirty — forty? — years of service and this is how they
are repaid. Being utterly used, tricked into working for an ill that they don’t understand.”

““So who is at the top? Who is giving the orders?”” Web asked.
““Hey guys, look at this!”” Schema had fallen behind at the window of the electronics shop.

The group turned and looked back. Schema was staring at the array of television sets. The blue glow
flickered on his face as though the transmission were being interrupted.

““Something is wrong with the signal. It keeps going to static and then displaying fragments of code. You
don’t think — "

A gasp of air. Schema froze, breathless, eyes fixed on the set in front of him. His back straightened and
arched; his neck tensed. Silently, slowly, he fell to the sidewalk.

And then he began to convulse.

Jen’s scream pierced the silence of the empty street.

Chapter 8 discussed some of the ways that Ruby allows code to be bundled together and executed, and it
introduced you to the paradigm of block-based programming. Blocks allow developers to bind a region
of code to the local scope but send it somewhere else in the program for execution, making it, in many
ways, a more flexible version of a callback.

This chapter will show you how to bundle code together and execute it in such a way that it affects objects
other than those from its source environment, allowing you to use blocks to change the structure and
workings of any object in Ruby while it is running. In addition, you will be able to trigger the execution
yourself, making any class and object fair game to have your custom code invade and start running. This
capability has two broad categories of use, which this chapter also covers:

O Mixins: Mixins are Ruby’s answer to multiple inheritance; they allow you to collect functionality
into modules and include them as needed in a class. This chapter will show you how to mix func-
tionality into your objects as needed while the program is running.

0 Monkey patching (or duck punching): Monkey patching is the practice of modifying someone
else’s code while it is running to change its behavior to better suit your needs. You might think of
it as a dynamic way to mix in functionality into a class or a class instance that lets you write the
code on the fly and modify any object of your choosing.

These two activities are similar in effect but different in intent. Mixins provide a way to add functionality
to objects in parcels, allowing objects to retool their functionality in the middle of program execution.
They are a critical tool that Ruby provides to help you manage large code bases because they form an
easy way to separate and group code into small modules and recombine these modules as needed into
larger objects.

Monkey patching is most similar to dynamic subclassing without the subclass: invading the code of an
object at run-time to surgically replace certain portions with your own version. The code of the target object
never changes on disk, but throughout the execution of your program, your modifications take precedence
over this “official” copy. Monkey patching can be a controversial topic to Ruby developers because the
style of coding it encourages can cause unexpected problems and can make a code base difficult to manage.

198

Chapter 9: Mixins and Monkey Patching

Nevertheless, monkey patching is also an important part of Ruby development because it provides a way
to experiment and preview changes that you would like to make more permanent later on.

When you have finished this chapter, you will be able to examine the Rails source with a better under-
standing of how classes and modules are organized, and you will know how to customize the behavior
of the Rails framework by dynamically injecting your own code into its objects.

Mixins

A mixin is Ruby’s way of adding the benefits of multiple-inheritance while sticking to a strict object
hierarchy. Mixing in is the practice of grouping a set of methods and variables together into a module and
inserting those modules as needed into a class. The class incorporates the module into its own capabilities
and remembers that the module has been mixed in. In this way, Ruby classes participate in two different
types of inheritance at the same time. Class inheritance forms a strict, single-parent hierarchy just like that
of Java. Module inheritance (mixins) enables multiple “parents,” but the conceptual role of these mixins is
not thought of as a parent, but rather as an added grouping of capability.

Unlike object inheritance, mixing in is always a dynamic process; it is not bound to the class definition
itself. Mixing in can occur as the object is being defined for the first time or dynamically, after the object
has loaded using the monkey patching techniques you will learn in the second half of this chapter.

Mixins are as much about code organization as they are about the act of mixing in, so learning how to
use them requires a bit of both. This section of the chapter first discusses the idea of grouping code into
modules and then shows how to mix these modules into the functionality of an object.

Organizing Code into Modules

A module is a unit of code organization in Ruby that is similar to a namespace in C#. Modules help
you organize your code into a hierarchical namespace so that you can group logical bits of coding
together and so that class, method, and variable names do not conflict with the code of others. Any
project intended for use by a large audience, including Rails, encloses all its code in modules that carve
out its own private part of this namespace world.

Modules are defined with the module keyword and terminate with the end keyword:

module VaderIncorporated
Any code right here is part of the VaderIncorporated module
Variable names, class names, and method names start fresh inside
a module because you have carved a new namespace for yourself that
will not conflict with the "outside world"
end

As may C# namespaces or Java packages, modules may also be nested inside each other.

module VaderIncorporated
module DeathStar
Place code for secret project X023 here.
end
end

199

Chapter 9: Mixins and Monkey Patching

And finally, inside a module you may place class, method, and variable definitions just as you would
normally program:

module VaderIncorporated
module DeathStar

A Class
class Star
def explode
p "BOOM!"
end
end

A Constant
DeathStarConstant = 3.14

A Method
def jobs_wanted_for

["Ruby", "Rails", "Planetary Destruction", "Encryption Specialist"]
end

A Module Method

def self.one_way_encrypt(string)
"BACON"

end

end
end

In the preceding code example, all the code entities you see defined are said to occur within the
VaderIncorporated: :DeathStar module. Immediately you see how this gives you a way to talk about
many different pieces of code as one collective group. The pointy-haired Sith boss could ask his team,
“How is the unit test coverage for VaderIncorporated: : DeathStar going?”” and his agile development
team would know exactly what portion of the code base he was referring to. You can also talk about this
module from within Ruby.

From outside the module, objects within may be addressed by prefixing successive module names
together with a double colon. Any nonmodule object within a module comes after that final module
name, also followed by a double-colon. So the Star class should be referenced as

VaderIncorporated: :DeathStar::Star
and the DeathStarConstant constant is referenced as
VaderIncorporated: :DeathStar: :DeathStarConstant

Other than that, everything except for method calling proceeds as normal. To define (and explode) a new
Star instance, for example, just type the following:

star = VaderIncorporated::DeathStar::Star.new
star.explode

Method calling is a bit more complex, as explained in the following section.

200

Chapter 9: Mixins and Monkey Patching

Methods in Modules

The definition of a module looks similar to the definition of a class, but in contrast to a class, it is impos-
sible to have an instance of a module. (The comparison to classes is a dangerous one; there are many
differences between classes and modules.) In the preceding VaderIncorporated: : DeathStar mod-
ule, you saw two different method definitions, provided again in the following code. Using just the
module, it is possible to execute one of these methods but not the other.

module VaderIncorporated
module DeathStar

A Method
def jobs_wanted_for

["Ruby", "Rails", "Planetary Destruction", "Encryption Specialist"]
end

A Module Method

def self.one_way_encrypt (string)
"BACON"

end

end
end

The uncallable method is jobs_wanted_for. This method looks just like a method defined in the regular
way, except inside a module. Drawing the tenuous parallel to classes, this method is defined in the
same way that an instance method would be for a class. But there is no such thing as a module instance,
so it is impossible to call this “instance” method using just the module alone.

p VaderIncorporated: :DeathStar::jobs_wanted_ for

undefined method 'jobs_wanted for' for # VaderIncorporated::DeathStar:Module
(NoMethodError)

It turns out that these “instance” methods can be reached only after a module has been mixed into a
class, which you will see how to do in a moment.

The second method, self.one_way_encrypt, is callable. It is what is called a module method. Again, a
parallel can be drawn to methods prefixed with self in class definitions: A module method is like a class
method and does not need an instance in order to execute.

p VaderIncorporated: :DeathStar: :one_way_encrypt ("The time to attach is now!")
Prints "BACON"
(And you wonder why they're trying to hire a new encryption specialist...)

Module methods are useful ways to provide helper or utility methods in the style of procedural pro-
gramming. They allow you to rope these utility methods off into a closed namespace so that they are
kept separate from the rest of your program, but they still can be accessed easily from outside the
module.

201

Chapter 9: Mixins and Monkey Patching

Mixing Modules into Classes

In addition to allowing you to organize code into packages, Ruby provides a way to inject the functional-
ity defined in modules into a class. From the standpoint of a developer looking to manage the structure
of his or her code, this type of functionality provides two primary benefits:

0 Groupings of code that together form an aspect that may apply to many different classes can be
defined once in a module and then mixed in to all those classes.

0 Classes that contain a vast amount of functionality can be divided into regions of similar con-
cern, split into separate modules, and then mixed into the class. Doing so makes the code easier
to navigate, test, and understand.

Ruby on Rails uses this technique extensively in its own codebase, which you can browse by typing the
command

rake rails:freeze:edge

into the root directory of a throw-away Rails project. This command will create the folder vendor/rails
in your project and download the entire Rails source into that folder. I always find it beneficial to have
this source available for easy reference, and I always keep a Rails project called rails_source in my
MacBook’s project folder just to contain the source code of Rails and the unpacked gems that I use
frequently.

Ruby keeps track of which modules have been mixed into a class, so you can write code that requires

a certain module mixin the same way developers can write code that requires a certain interface. The
difference is that Java interfaces provide only the method definitions, whereas Ruby modules can provide
the implementations, as well!

What Gets Mixed In?

When you mix a module into a class, the “instance’”” methods contained within that module become a
part of the class definition as instance methods on that class (these were the uncallable methods from
the previous section). The following code defines a simple module that contains a replacement for the
inspect method available on all objects. This new method, super_inspect, will be a tool for debugging
that provides detailed information about the class instance that it was called on.

module ArtOfRails
module Inspector

def super_inspect
List class name and ID
desc = "#{self.class.name} ID=#{self.object_id} \n"

desc += "-" * desc.size + "\n"

List all included modules
desc += "Modules: #{self.class.included modules.inspect}\n"

202

Chapter 9: Mixins and Monkey Patching

List all instance variables
desc += self.instance_variables.map { |v| "#{v} = #{eval(v.to_s)} \n"}.join

end

end
end

You can also define a more involved Person class to make the output of super_inspect a bit more
interesting when you run it:

class Person
def initialize(first, last, giraffe)
@first = first
@last = last
@giraffe = giraffe

end
end
ted = Person.new("Ted", "Benson", "No, thank you")
grace = Person.new("Grace", "Benson", "Me neither")

And now for the mixins. Ruby provides two ways to mix a module into a class, include and extend, that
operate a lot like class_eval and instance_eval.

Mixins with include

The include method can be called on only a class (not a class instance), and it is private, so you must
call it from within the class (using either class X ... end or one of the eval methods you will learn later).
Using include pulls all the module’s regular methods into the class as instance methods and pulls its
constants in as class constants:

This will make super_inspect available on all
instances of the Person class

class Person
include ArtOfRails::Inspector

end

puts grace.super_inspect

Prints:

#

Person ID=280820

Modules: [ArtOfRails::Inspector, Kernel]
@Qgiraffe = Nope

@last = Benson

@first = Grace

203

Chapter 9: Mixins and Monkey Patching

So include is the method that you want to use when your goal is to have the mixin add functionality to
the instance members of a class.

Mixins with extend

The second way to mix in a module is to use extend. Whereas include can be used only on a class,
extend can be used on either a class or a class instance — and its effect will depend on which.

Calling extend on a class will pull the module’s regular methods into that class’ singleton class, effec-
tively making them class methods:

This will import the super_inspect method as a class method on Person
class Person

extend ArtOfRails::Inspector
end

You will learn about singleton classes in the second half of this chapter, but as a forward reference, note
that calling extend on the class is equivalent to calling include on its singleton.

So calling extend on the Person class will also pull in the regular methods defined contained within the
module, but it will add them as class methods on the Person class instead of as instance methods on its
instances.

puts Person.super_inspect

Prints:
#
Class ID=281270

Modules: [Kernel]

You can also call extend on class instances. Calling extend on a class instance has the effect of pulling
the module’s method in as instance methods without affecting any other instances of the class. The following
code calls extend on the ted instance of Person but not on the grace instance, causing super_inspect to
be available only on ted.

ted.extend ArtOfRails::Inspector

puts ted.super_inspect
Person ID=280980

Modules: [Kernel]

@giraffe = No, thank you
@last = Benson

@first = Ted

puts grace.super_inspect
NoMethodError: undefined method 'super_inspect' for
#<Person:0x892d8 @giraffe="Nope", @last="Benson", @first="Grace">

204

Chapter 9: Mixins and Monkey Patching

So extend has two basic uses. The first, when used on a class, is to provide a way to mix modules into
a class to create class methods. The second, when used on an instance, is to create a special mixin that
applies only to that one instance.

Do You Walk Like a Duck?

Duck-typed languages are those that are concerned with how an object can be used rather than what

an object is. As a result, they do not require developers to specify types on variables (even in method
signatures) because the notion of an object-declared type, as far as the interpreter is concerned, is less
important than whether it supports the methods and properties the code is demanding of it. Mixins
provide a good example of why languages such as Ruby are often duck typed. When an object pulls

in the functionality of several different modules, and may pull in even more dynamically, the notion

of an object’s “type” gets a bit confusing. Although the object still has an unambiguous type in the
class hierarchy, it might be capable of a lot more, thanks to the modules that it mixes in. Therefore, it is
sometimes advantageous to think of objects in terms of what behaviors they support rather than in terms
of a single class name.

Ruby keeps track of all modules that have been mixed into an object so that your code can make
decisions based on not just what class a object is but also what mixins it contains. You might have already
guessed from the preceding super_inspect method that the included_modules method returns a list of
all modules that have been mixed into an object. Ruby, however, also lets you check for the inclusion of
a named module with is_a?, the same way you check for a class.

module Duck
def walk ; "Waddle waddle" ; end
def talk ; "Quack quack" ; end
end

ted.extend Duck

if (ted.is_a? Duck)
p ted.walk
p ted.talk

end

Prints
"Waddle waddle"
"Quack quack"

So in Ruby, the saying really holds true: If you include the mixin that lets an object talk like a duck and
walk like a duck, then you're safe saying it is_a? Duck!

Mixins in Rails

It is clear that mixins are a powerful tool for compartmentalizing clusters of behavior and importing them
into many objects, but just how common is this practice? Very. One problem that new Rails developers
have, especially when migrating from the Java or C# world, is that of project management. In contrast
to what is available for languages such as Java, little literature is devoted to the beginner looking to
organize code in a large project setting; because everything is script based, many possibilities are abound.
Examining the Rails source code is a good way to learn how to use modules and mixins to manage a large
project of your own.

205

Chapter 9: Mixins and Monkey Patching

The Rails Source

The Rails source code provides an excellent example of how you can use mixins as a project manage-
ment tool in addition to its valuable language capability. Open the base file for ActionController to
examine how it is organized. If you are looking at the source from a project with a “frozen” copy of
Rails (using a command such as rake rails:freeze:edge), this file should be located in the directory
rails/vendor/rails/actionpack/lib. After a series of require statements that make the Ruby inter-
preter aware of other files on the file system to pull into the action_controller.rb file, you will see the
following:

ActionController: :Base.class_eval do

include ActionController::Flash

include ActionController::Filters

include ActionController: :Layout

include ActionController::Benchmarking

include ActionController: :Rescue

include ActionController::MimeResponds

include ActionController::Helpers

include ActionController::Cookies

include ActionController::Caching

include ActionController::Verification

include ActionController::Streaming

include ActionController::SessionManagement

include ActionController::HttpAuthentication: :Basic::ControllerMethods

include ActionController: :Components

include ActionController::RecordIdentifier

include ActionController::RequestForgeryProtection
end

Don’t worry about what the method class_eval on the first line means — you will learn all about
it in a few pages. For now, just think of it as executing the lines below it from within the actual class
definition of ActionController: :Base

The root action_controller.rb class doesn’t even define any functionality at all! Instead, it coordinates
the mixing in of several modules into the ActionController::Base class. This class happens to be
defined in a separate Ruby file that is included in one of the require statements at the top of the
action_controller.rb file. This base class itself (in the other file) defines the core functionality at
the heart of what ActionController tries to do, but this functionality is not enough to make it all the
things that Rails requires of us. These mixins provide it those extra features — defined in modules
with names that should sound familiar to you: flash.rb, filters.rb, mime_types.rb, and so on. Each
of these modules encapsulates a particular piece of functionality relevant to the topic referenced by its
filename.

In addition to providing a somewhat self-documenting description of what overall capabilities
ActionController contains, this style of code organization makes customizing and modifying the class
to meet your needs very easy. Although this is just one way to organize a Ruby project, organizing code
into multiple files and modules and tying it together via mixins is an effective way to deal with the com-
plexity of a large-scale code base. (And in a loosely typed, IDE-averse language such as Ruby, fighting
off complexity is highly important.)

206

Chapter 9: Mixins and Monkey Patching

Your Rails Code

You can also use mixins to promote better code organization and eliminate repetition in your own
projects. As you can see from the previous examples, mixins are most effective when there is some
common concern that may be expressed as a series of helper methods that an object might want to
incorporate.

But first, you need to know how to load code from a different file into the one you are currently using. The
require keyword, which you have no doubt seen before, takes the filename of a Ruby class
(without the . rb extension) and causes the interpreter to read in that file. Ruby searches for the file on its
include path, which in Rails already includes several project-local directories such as the 1ib/ folder of
your Rails application.

For example, say that you keep a constants file stored in 1ib/my_app/constants.rb. To make sure that
these constants have been read in before code in another file uses them, simply place the following at the
top of that other file:

require 'my_app/constants'

Any code within the /1ib/my_app/constants.rb file would then be executed, which means that any
contained constants and modules would be loaded.

If you want to read in the contents of a file so that it is globally available across your Rails application,
do so from the config/environment.rb file. This file is executed as Rails starts up, so it is a good place
to pull together all your custom requires and class overloading.

Now that you know how to store modules in a separate location from the one where you will use them,
look at the following two examples of different ways you might use modules and mixins in your own
application.

Example 1: Geolocatable Model Objects

Pretend that you are making a location-based search application and your schema involves several differ-
ent types of objects, all of which must contain several helper methods that handle geolocation operations
and spatial arithmetic. You have a few possibilities for implementing such a feature in a reusable way:

O Create an abstract ActiveRecord class (by stating self.abstract_class = true in the class def-
inition), add your functionality there, and then use that class as the new base class for all the
model objects that represent database tables with spatially-bound data. (An abstract
ActiveRecord model is one that does not correspond to a table in the database, but rather is
meant to be used as a base class to other ActiveRecord model classes.)

O Create an acts_as_locatable plug-in that adds the needed methods to any ActiveRecord class
on which the acts_as_locatable macro is used. You will learn how to do this in Chapter 10,
“Code That Writes Code (That Writes Code).”

0 Implement your geolocation functionality in a module, and simply include the module in any
ActiveRecord object that requires it.

207

Chapter 9: Mixins and Monkey Patching

Each option will work, each with different properties. The abstract base class and acts_as_locatable
plug-in limit the usability of your code to ActiveRecord objects; implementing it in a module makes it
more generally applicable but sacrifices easy access to ActiveRecord’s inner workings.

Example 2: A Yahoo! Ul Helper

A second example of using mixins in your Rails project is the addition of a “helper”” to Actionview.

If you have done AJAX development with Rails, you are probably aware that Actionview provides
many methods that assist the development of Prototype and script.aculo.us functionality: asynchronous
transfer, drag and drop, sortable lists, and so on. These helpers are composed as a series of methods
available within the context of an Actionview object — the context in which your view templates are
parsed. This is exactly the sort of job that modules are good at solving: clusters of functionality that
you want to incorporate into a particular object. Figure 9-1 shows what happens in the actual
ActionView code.

file:lib/action_view.rb

~
require 'action_view/base'

\Action\/iew: :Base. loadfhelpersj

file:lib/action_view/base.rb i
4 N Loads the file so that
for each helper: -% the module is defined
require (helper_file)

..y Mixes the loaded module

include (helper _module) -) > into the Act ionvi ew class

Figure 9-1

You can write a helper and mix it in to Actionview, too. In this section, you can take the first steps to
writing one for the Yahoo! Ul framework, an alternative to the Prototype and script.aculo.us libraries
that ship with Rails. First, you will create a new file called yui_helper.rbin the 1ib/ directory of your
Rails project and create a few nested modules inside it. It is common to make the outermost module a
wide-spanning namespace specific to your company, group, or project, so you will name the outermost
module ArtOfRails. Inside ArtOfRails, create a module ViewHelpers, which will be the namespace
for any subsequent view helpers you create. Finally, inside that module, create a module YuiHelper to
contain the Yahoo! UI Helper.

module ArtOfRails
module ViewHelpers #:nodoc:
module YuiHelper

Your helper methods go here

HH H H o FH

end
end
end

208

Chapter 9: Mixins and Monkey Patching

Second, you will implement a simple example helper method to demonstrate the types of methods that
would go into such a module. Recall the “Blocks for HTML" section in the previous chapter, in which
you saw how you can use blocks to weave Ruby code in and out of your HTML. Before, you saw only
how to write a block-accepting method without knowing how to integrate it into your Rails application.
Now you’ll implement a code-wrapping method to create YUI Modules using the same strategy.

A YUI Module is a standardized HTML structure that represents a grouping of content with an optional
title and footer. The YUI JavaScript library uses the Module HTML structure as the basis for many of its
JavaScript user interface components. A basic YUI Module looks like this:

<div id='module_id'>
<div class="hd">The header goes here</div>
<div class="bd">The main content goes here</div>
<div class="ft">The footer goes here</div>
</div>

You can add a ymodule method and place it inside your ArtOfRails: :ViewHelpers: : YuiHelper module,
as follows:

def ymodule(*args, &proc)
raise ArgumentError, "Missing block" unless block_given?

options = args.extract_options!

box_open = "<div "
box_open « "id='#{options[:id]}'" if options[:id]
box_open « ">\n"
box_open K '<div class="hd">"'
box_open K options[:title] if options[:title]
box_open K '</div>'
box_open « '<div class="bd">'
concat (box_open, proc.binding)
yield
box_close = '</div><div class="ft">"'
box_close « options[:footer] if options[:footer]
box_close K '</div>"'
box_close K "</div>\n"
concat (box_close, proc.binding)
end

Finally, you'll perform the mixin. Open config/environment.rb and scroll to the bottom of the file.
First, require your library file so that Ruby parses it in and makes your modules available. Next, open
the ActiveRecord: : Base class definition and place an include statement that references your YuiHelper
module. Doing so causes all the methods inside your vuielper module to become instance methods
on the ActionView: : Base object, even though it has already been loaded and defined elsewhere (this is
really exciting stuff!).

require 'yui_helper'
class ActionView: :Base

include ArtOfRails::ViewHelpers::YuiHelper
end

209

Chapter 9: Mixins and Monkey Patching

Test your new helper by calling the ymodule method from within an RHTML view template. It will expect
a block that contains the body of the box.

<% ymodule(:title => "Sidebar", :id => "sidebar_1") do %>
This is the sidebar of my web page.
<% end %>

Looking at the output of this method call in the rendered HTML, you see that it correctly rendered a YUI
Module for you (line breaks are added to more clearly show the outputted code):

<div id='sidebar_1'>
<div class="hd">Sidebar</div>
<div class="bd">
This is the sidebar of my web page.
</div>
<div class="ft"></div>
</div>

So there you have it — all the tools you need to extract repetitious concepts from your HTML code,
pull them into block-accepting methods, place those methods into sharable modules, and then mix the
modules into ActionView.

Monkey Patching

Monkey patching refers to the process of dynamically mixing pieces of functionality into libraries that you
did not write, thus changing their behavior at run-time. Monkey patches are usually short, consisting of
only a few lines of code, and they don’t need a module to contain them. They are usually used to modify
the way that a particular class or instance operates without actually modifying the definition of that class
in the source file from which it came.

In that regard, you can almost think of monkey patching as a form of subclassing — it certainly has the
same intent. As does subclassing, monkey patching extends and overwrites an object’s functionality to
add new behaviors without changing the original object. Monkey patching is even more powerful in
that, as with mixins, it enables you to make the changes to only one instance of an object while leaving
the other instances alone. Where monkey patching differs from subclassing is that there is no named
subclass to be found; instead, the patch is applied to the class in memory after it has been loaded, leaving
it untouched on disk.

Monkey patching can be a powerful tool to help you explore the Rails framework and fine-tune its behav-
ior to your specific needs. If you are thinking of creating a subclass, a monkey patch can be a good way
to prototype the changes you want to make before spending the effort to actually create a library and
include the subclass there. At the end of this section, you will see some best practices for monkey patch-
ing that are good to know because the power it affords you comes with some development risks and
responsibilities that you must understand. But first you will take a look at the eval method and its
associates — the methods that make monkey patching possible — and see how they work.

210

Chapter 9: Mixins and Monkey Patching

Patching Monkeys and Punching Ducks

Developers are accustomed to having to come up with new words to describe our
creations, but rarely are they as colorful as “monkey patching.” The term originally
arose in the Python community when developers of the Zope Content Management
System would dynamically inject code at run-time into Zope’s libraries to change the
way it worked.

This practice was originally called guerilla patching, because coding in this manner
is a bit like guerilla warfare: Instead of developing properly with subclassing,
plugin-writing, and adherence to the framework’s APIs, developers were using
Python’s dynamic features to invade the inner workings of Zope and change it. It
is a bit like working on the engine of your car while you are driving it. Whether
through misspelling or humor, the term eventually became gorilla patching, which
further morphed into monkey patching.

Many Python developers, and some Rubyists, look down on monkey patching (see
the sidebar in the Monkey Patching section, later in this chapter), so perhaps to carve
a new identity for the practice in the Ruby world, some Rubyists have started calling
the practice duck punching. The term “duck punching” comes from the fact that Ruby,
along with Python, is a duck-typed language, as Adam Keys and Patrick Ewing explain
on the “RailsConf 2007"” edition of the Ruby on Rails Podcast:

Adam Keys: ““Yeah, exactly. Way down in Dallas, in the
Dallas Ruby Brigade, we believe that monkey-patching,
while it’s served us well, the time has come for some
new terminology there. So while you have duck-typing
in Ruby, we believe that monkey-patching should become
duck-punching.”

Patrick Ewing: “Well, I was just totally sold by Adam, the
idea being that if it walks like a duck and talks like a duck,
it’s a duck, right? So if this duck is not giving you the noise
that you want, you've got to just punch that duck until it
returns what you expect.”

Eval: The Interpreter’s Back Door

Monkey patching is most often performed using a simple method named eval and two of its variants,
class_eval and instance_eval. As does the eval method in many languages, Ruby’s eval allows
developers to execute the contents of a variable as if it were a part of the executing program. Its variants
class_eval and instance_eval provide the functionality for where the cool part happens: They allow
you to execute a piece of code as if it were being run from within some other object.

211

Chapter 9: Mixins and Monkey Patching

The most basic use of eval is with a String. The following two lines of code, for example, perform exactly
the same behavior:

puts 2+2
eval ("puts 2+2")

The eval method works just the same as any other region of code, returning the value of the statement it
executes, so you can use the results of an evaluated string just as you can use the results of a method:

class Person ; end
object = eval ("Person.new")

puts object
Prints: #<Person:0x8a50c>

But, of course, because eval executes the String as if it were part of the program, the variable assignment
simply could have taken place inside the string itself, and it would have remained available after the eval
statement executed:

eval ("object2 = Person.new")

puts object2
Prints: #<Person:0x86e98>

There is no limit to what can be read into eval. Your entire program can be read into a String variable
from a separate file and executed in one fell swoop if, for some reason, it demanded it.

eval (nunn
def dynamic_method
puts 'This method was defined dynamically'
end

no)

dynamic_method ()
#Prints: This method was defined dynamically

What does all this mean? Primarily, it means that Ruby gives you the ability to execute code that the
interpreter does not even know exists until run-time. Take that a step further and it means that Ruby
lets you modify and define objects dynamically. In the previous chapter, “Playing with Blocks,” you
created blocks and Procs and used them to pass code around like a first-class object. These blocks of code
could be transferred from method to method and executed at will. But the code that you placed inside
those blocks was all inward-facing — code that used the objects and variables that already existed in the
program.

With a line like

eval (nonon
def dynamic_method
puts 'This method was defined dynamically'
end

" n)

212

Chapter 9: Mixins and Monkey Patching

you see that this dynamically generated and evaluated code does not have to just use the objects already
in your environment; it can modify them, too. You could have done this in the previous chapter, as
follows:

proc = lambda {
def dynamic_method
puts 'The dynamic method exists!'
end
}
proc.call

But this way gives you the power only to dynamically change the environment in which the code is
executing. To monkey patch, you need to be able to change objects other than the one running the code.
With eval’s two variants, instance_eval and class_eval, that is exactly what you can do. “Add this
method! Include this module!” you can shout, and the objects will respond, even if you have never even
seen their source code.

Eval’s Two Siblings

The eval method has two siblings that allow you to send code into another object for execution instead
of just executing it in the context in which the eval method occurs. This technique is almost always
used for the purposes of modifying the existing object definition to change the way it works or include
new functionality. The other, more formal terminology for this set of concepts is meta-programming. It is
supported in several languages, but few have support as elegant and capable as Ruby.

Meta-programming is the heart of monkey patching. Each of eval’s two siblings, class_eval and
instance_eval, also come with alternative ways of accomplishing the same result, all of which will
be covered here. Both of these work similarly to eval, except for a few differences:
Q They are usually called with a block instead of a String value, although a String will work.
Q They are called on an object, for example:
a Object.class_eval { # block goes here}
a Object.instance_eval { # block goes here}
a instance.instance_eval { # block goes here}
Each of these methods can be used on different types of objects with different results, much in the same

way that include and extend have slightly different meanings and change behavior whether you are
using them on a class or a class instance.

The issues of scope can get a bit tricky in terms of what gets bound to what. Many gears are working
behind the scenes to make the following idioms possible, but after you learn to use them, they can become
an invaluable part of your programming toolbox. The following *‘class_eval” section attempts to show
you how to use these idioms with a certain result in mind, as opposed to exploring fully the mechanisms
by which they operate.

class eval

The class_eval method is the simpler of two special eval methods because you can use it only on
a Class object. In this way, it is like the include method for mixins. The code passed to class_eval is

213

Chapter 9: Mixins and Monkey Patching

executed as if it were included in your original class definition. You can think of it as just a way to append
code that you wish had been added when the class was originally defined.

Using an example Person class, you can see this in action.

class Person
attr_accessor :first

def initialize(first)
@first = first
end

end

ted = Person.new "Ted"

As it stands in the preceding code, the Person class knows only how to report its first name. Using
class_eval, you can teach each Person instance to greet as well. Any change you make immediately
affects all instance variables of the class, even if they have already been created.

Person.class_eval do

def say_hi
"Hi! n
end

end

p ted.say_hi
Hi!

As you might expect, you can also add class methods by defining them the same way you would have
done in the original class definition.

Person.class_eval do
def self.mammal?
true
end
end

p Person.mammal?
true

The class_eval method is interesting when it comes to bindings, and it differs from the normal way
in which blocks behave. Any methods you call within a block passed to class_eval will be called on
the object that receives the block — the object that class_eval is being called upon. (If the methods are
defined outside all classes on the root Object, they will of course be executed just fine.) Local variables,
though, remain bound to the environment calling class_eval, just as with normal block execution. The
result is a bit of a mixed environment that gives you access to a little bit of both worlds.

To demonstrate this binding behavior, watch what happens to the food variable below. It is declared
outside the class_eval block and outside the Person class by itself in a Ruby script; it’s then printed

214

Chapter 9: Mixins and Monkey Patching

from within a class_eval on the Person object to show that it is still available. You then change the
value of food inside the class_eval and show that the change persists after you have exited:

food = "grapefruit"

Person.class_eval do
p "Food inside of class is: #{food}"

food = "chicken"
end
p "Food has been changed to: #{food}"
Prints:
#
Food inside of class is: grapefruit
Food has been changed to: chicken

This code shows that variable bindings behave just as they would with a regular block — attached to
their source environment.

Now you can take a look at method bindings. You'll declare a mammal? method outside the Person class
that, if this were a normal block, should get executed instead of the version defined on Person.

def mammal?
"If this were a normal block, you would see this message"
end

Now you will call the mammal? method and print it from within a class_eval call to Person.

Person.class_eval do
p mammal?
end

Prints "true"

Oddly enough, the response is from the method declared within Person, not from the block’s source
environment.

Remember that the def keyword that you use to define a new method creates its own scope. This wipes
out access to any local variables that you may have otherwise had access to. So although you do have
access to local variables from the caller’s scope when calling class_eval, you lose them temporarily
while inside a new method definition, the most common use of class_eval.

class Class ; end

Another way to append code to a class’s definition after it has already been loaded is to simply define it
again. As is the class_eval method, the redefinition of a class is additive, so anything new is appended
and anything that already existed is overwritten. Revisiting the Person example, you start fresh with the
following class:

class Person
attr_accessor :first

215

Chapter 9: Mixins and Monkey Patching

def initialize(first)
@first = first
end

end

ted = Person.new "Ted"

The greet functionality that you added before with class_eval could also be added with another class
block. As with class_eval, any code inside this new class block that modifies the object itself immedi-
ately has an effect on all instances of the Person object already created.

class Person
def hi
I|Hi n
end
end

p ted.hi
"Hi "

Dynamically adding functionality in this way is different in two important ways.

Q It does not allow you to dynamically generate the code that gets executed on the class object as
class_eval does by accepting code inside a String variable.

O Just as with the def keyword, the class keyword creates its own local scope, so you lose your
ability to access variables local to the code outside the class ... end block. Note that the scope
does not carry over from class block to class block, so if you declare a variable local to the first
class definition, it will not be there the next time you open a class block for the same class.

instance _eval

The instance_eval method is the second special eval method that allows you to execute code with
special privileges in another object’s context. Although class_eval is meant to be executed on Class
objects only, instance_eval can be executed on both classes and nonclass objects, which means it can
be executed on just about everything. Because of this, its behavior changes depending on whether you
execute it on a class or a nonclass. Just as class_eval could be compared to the include method for
mixins, instance_eval can be compared to the extend method.

Executing instance_eval on a Class

Executing instance_eval on a class causes the provided code to be executed on that class’s single-
ton class (see the sidebar “What Is a Singleton Class?”’ that follows for a definition of singleton class).
As a result, any code within it effectively operates on the class itself. Any methods defined within the
instance_eval block become class methods rather than instance methods, regardless of whether they are
prefixed with self.

For an example, return once again to the basic Person definition:

class Person
attr_accessor :first

216

Chapter 9: Mixins and Monkey Patching

def initialize(first)
@first = first
end
end
ted = Person.new "Ted"

To add the mammal? method to the Person class, execute the following:

Person.instance_eval do
def mammal?
true
end
end

p Person.mammal?
true

What Is a Singleton Class?

In the earlier sidebar on the etymology of the term “monkey patching,” I mentioned
that dynamic languages such as Ruby are often duck-typed: They are described by how
they act rather than by a specific class name associated with them. Ruby does keep
detailed information about the class hierarchy of an object while still allowing you to
add, remove, and override its methods dynamically. It accomplishes this with what is
called a singleton class.

A singleton class is a class that every object in Ruby contains that floats over the object’s
proper class. The singleton class is specific to that object and has first dibs on defining
how that object behaves. (Remember that in Ruby, even a class itself is also an object,
so it has a singleton class, too.) Changes to the singleton class can, therefore, affect the
way that object behaves without requiring any changes to the proper class of the object.
In a way, it is as though every single object in Ruby gets its own private anonymous
subclass of the class type that you gave it at initialization. That anonymous subclass is
the singleton class. Making modifications to an object’s singleton class is one of the keys
to dynamic programming in Ruby because it provides a way to dynamically customize
the behavior of a certain object without affecting all other objects of that type.

An easy way to access any object’s singleton class directly is to define this method on

the root 0bject. Then from any object in the environment, just call singleton_class

on one of its instances to fetch that instance’s singleton class. The following bit of code
will add the singleton_class method to all objects in your Ruby environment:

class Object
def singleton_class
class K self ; self ; end
end
end

Executing instance_eval on an Instance Variable

Executing instance_eval on an instance variable (that is, an object that is not a class) causes the provided
code to have an affect on only that instance of the class. This is because the real changes are taking place

217

Chapter 9: Mixins and Monkey Patching

on the singleton class that rests in between the object and its proper class. Using the same basic Person
definition for the earlier examples, define the following two instance variables:

ted = Person.new "Ted"
grace = Person.new "Grace"

Then call instance_eval on one, but not the other, to define the say_hi method.

grace.instance_eval do
def say_hi
"Hi! n
end
end

This causes the block within to be executed on grace’s singleton class, meaning that the change will
take place to her copy of the Person class but not any other instance’s copy. Attempting to then use that
method, you see that it works on grace but not on ted because the method addition happened on grace’s
singleton class rather than on the person class.

p grace.say_hi
Hi!

p ted.say_hi
NoMethodError: undefined method 'say_hi' for #<Person:0x89cc4 @first="Ted">

class « Class

Finally, you'll look at one last technique for inserting code dynamically into another class. Ruby contains
an idiom that looks like class « ClassName to open a block of code that executes on the singleton class
of a given class. If you want to define class methods on an object without repeating the self prefix over
and over again, an easy (but confusing to newbies) way to do it is with a class « Class block. This is
also a convenient way to include an entire module as a set of class methods on an object.

There are two main ways to use the class « Class idiom, both of which are shown here with the Person
class from the prior examples. The first way is to use it from outside the class definition by explicitly
stating the class that you need to fetch the singleton class for. The following piece of code opens the
singleton class for Person:

class <« Person
def mammal?
true
end
end

p Person.mammal?
true

And the second way is to use it from within the class definition block with the self variable:

class Person

class K self

218

Chapter 9: Mixins and Monkey Patching

def warm_blooded?
true
end
end

end

p Person.warm_blooded?
true

Both methods are equivalent and provide a nice shorthand for a Class. instance_eval block.

class_eval and instance_eval Compared

This section covered a lot of ground in a short number of pages, so the following table provides a
recipe-style reference for when to use each of the two special eval methods (or their shorthand equiva-
lents).

If You Want To ... Then ... By Passing a Block/String
To...

Amend a class’ definition as Execute the code within the Class.class_eval

if you were back in the context of the class

original class. .end block

Add class methods to an Execute the code within the Class.instance_eval

existing class after its initial context of the class’ singleton

definition. class

Add instance methods to one Execute the code within the instance.instance_eval

instance of a class without context of the instance’s

affecting other instances singleton class

Good Monkey Patching Technique

You now have all the tools that you need to monkey patch (or duck punch, whichever term you prefer).
In fact, if you followed along with the YUI Helper example from the mixin section, you have already
done it. Monkey patching is similar to subclassing in intention; its goal is to take an object designed by
someone else and modify its behavior to suit your own needs. In terms of implementation, though, it is
drastically different from subclassing:

0O Whereas subclassing occurs at code time, monkey patching happens at runtime (even though
everything in Ruby technically takes place at runtime).

QO Whereas subclassing results in a new object separate from the base class, monkey patching tram-
ples into the code of the base class and modifies it in memory.

0O Whereas subclassing leaves you with a class definition that can be easily tested with unit tests,
monkey patches are a bit more awkward to test because the patch itself represents only a modifi-
cation to some other structure, not a stand-alone code structure.

219

Chapter 9: Mixins and Monkey Patching

So although monkey patching shares the same intent as subclassing, it is most similar in execution to
downloading the source code for another developer’s library, changing it, and recompiling — except
that Ruby allows you to change and recompile dynamically without ever actually modifying the original
source code.

Just as with subclassing, monkey patching is a development practice, a means to an end rather than the
end itself.

When to Monkey Patch

This section contained a lot of the how but now much of the why. You are equipped with the tools to
add methods to classes of your choosing on the fly, but when would you do so? The answer is simple:
whenever a piece of the framework does not behave as you want it to and monkey patching provides
an appropriate way to change it. If Actionview does not contain helper methods that you would like
included in it, you can monkey patch them in. If you don’t like ActiveRecord pagination, you can
monkey patch your own implementation method. I have often found myself monkey patching changes
to the way that Rails locates view templates so that I can more easily create multiple themes for a
site and store them in parallel subdirectories within the app/views/ folder. When you should monkey
patch is a question that you have to answer because it depends on your particular needs of the Rails
framework.

Be Aware of the Hazards

If you search the Web for “monkey patch”” or “duck punch,” in addition to raising a red flag at your ISP
for animal abuse, you will find a controversy surrounding the development practice. Many developers
feel that it is a poor way to develop software because it completely breaks down the idea of object encap-
sulation that has developed over the past 50 years. What good are objects, a common argument contends,
if the rules governing them are not respected?

In truth, monkey patching is neither good nor bad: it is just another tool. Used when appropriate, monkey
patching can be an incredibly concise and effective tool. Overused, it can detract from the stability and
readability of your code. Either way, the argument against it does raise an important point about the
dangers of breaking encapsulation that you should always be mindful of when writing a patch.

One of the fantastic benefits of OO development is that objects enable you to use a set of functionality
without having to understand how it is being provided. The only requirement placed on an object’s
user is that he or she follows a contract (the interface) about how to interact with that functionality.
The flip side of this contract is that the code encapsulated inside the object is at the complete discretion
of the implementer. It can change abruptly, use variables in strange ways, and make sense only to the
object developer, all as long as it continues to provide the functionality guaranteed by the contract.

If the object developer wishes to allow her object to be modified, a formal method exists for the developer
to mark how each component of the object is allowed to be safely overridden.

When you monkey patch, you must make the choice about how deeply to intertwine your patch in the
workings of the object you are patching. The safest patches insert additional functionality into an object,
using accessors and setters to interact with the object instead of instance variables. The most dangerous
patches change the semantics of existing functionality and use instance variables that are not exposed
outside the object. These dangerous patches are the ones that break the OO contract, because someone
other than the object developer is suddenly privy to the hidden gears behind the object’s public interface.

220

Chapter 9: Mixins and Monkey Patching

If you find yourself writing code that overwrites the inner workings of an existing object and uses its
instance variables, be aware that you risk tying yourself to the particular version of the code that you
are patching. An upgrade may bring any number of implementation changes that will render your patch
nonsensical. Also be aware that modifying the inner workings of an object may have far-reaching effects
outside the immediate region of code that you have operated on. You never know when a String value
is being checked by a regular expression, or a series of implicit preconditions and post conditions for a
method exist without documentation, for example. In Chapter 12, “Behavior-Driven Development and
RSpec,” you will learn how to write behavioral tests using the RSpec library. When you live dangerously,
diligent testing is an important safety rope.

Monkey Patching Is a Temporary Solution

Monkey patching provides a great way to experiment, so despite its hazards, it is a valuable Ruby devel-
opment tool. One good way for keeping yourself from going too far is to always think about monkey
patching as a temporary solution. Even if some of your patches remain patches for the entire life span
of your project, insisting to yourself that monkey patches are temporary fixes is a good defense against
implementing anything too large as a patch.

Treating monkey patches as temporary solutions has another implication: The best monkey patching
is often short and sweet. Consider this patch from Obie Fernandez, author of The Rails Way (Addi-
son Wesley). It adds a to_model method to instances of the string class so that you can quickly load
ActiveRecord model instances from strings containing a dom_id-style model reference. With this patch,
the call "user_10".to_model becomes another way to perform User.find (10).

class String

used to instantiate a model based on a dom_id style
identifier like "person_10"
def to_model
self =~ /(.*?)_(\d+)$/
class_name, id = $1, $2
class_name.classify.constantize.find(id)
end

end

This is the type of code enhancement that monkey patching is best used for. If you find yourself writing
pages and pages of code to be dynamically injected into one of the Rails base classes, it probably means
that you have a significant development requirement on your hands that you are trying to meet. Give
your requirement the attention it deserves by developing and testing it as either a stand-alone feature or
as a subclassed object.

‘““Backing Up’’ Methods before You Patch Them

Ruby contains an alias method that allows you to provide multiple aliases for a single method. Aliasing
methods can be useful when monkey patching because the alias binding sticks to the original method
instead of the one after a patch has been applied. This allows you to easily save the original implemen-
tation of a method that you are monkey patching. Saving the original implementation is often useful if
your overridden method is a superset of the original’s functionality and you would like to be able to use
the existing implementation while adding a few extra statements of your own.

221

Chapter 9: Mixins and Monkey Patching

Suppose a library you are using ships with a Person class that, among its many uses, contains the ability
to generate a site identifier from a person’s name:

class Person

def initialize (name)
@name = name
end

def get_site_id
@name.downcase
end

end
#Usage:

yoda = Person.new "Yoda"
p yoda.get_site_id
Yoda

If you wanted these site identifiers to be prefixed with the name of your web site, you could monkey
patch this class to overwrite the get_site_id method while preserving, and even using, the preexisting
one:

class Person
alias :0l1d_site_id :get_site_id

def get_site_id
"MYCOOLSITE_" + old_site_id
end
end

p yoda.get_site_id
MYCOOLSITE_yoda

As shown, any code calling the get_site_id now receives the new version you provided, while the old
version is still preserved for your use at o1d_site_id.

Summary

This chapter showed two key features of Ruby development, both methods of adding functionality to
an object. The first, mixins, is Ruby’s way of providing multiple inheritance. Mixins allow you to take
modules of code and inject them into an object. The use of modules and mixins can be a great way to
organize large class files in multiple, sectioned-off components, and it allows certain commonly used
methods to be written once but used in several object definitions.

Monkey patching is like an anonymous, inline mixin performed on somebody else’s code. Built on the
classeval and instanceeval methods, it allows you to modify objects at run-time by sending them
blocks (or strings) of code to evaluate. This chapter explained several different code techniques that
enable you to monkey patch, each allowing for a different type of code modification. Monkey patching

222

Chapter 9: Mixins and Monkey Patching

can be a great tool to implement a quick fix or experiment with some new functionality, but it also must
be used wisely because of the risks it brings.

The next chapter completes the three-chapter set on advanced Ruby. It discusses ways in which you can
write objects that do not know which method calls they will get until the method calls are attempted. You
can intercept these method calls — calls to methods that don’t exist — and determine an appropriate
response at run-time, even adding the code used to create the response as a new method as a form of
code caching. This forms the basis for many of the dynamic features of Ruby, including ActiveRecord’s
seemingly magic handling of database tables. You will learn how to write code such as ActiveRecord, as
well as many other design patterns using this language feature.

223

10

Code That Writes Code
(That Writes Code)

The four rushed to Schema’s side, but it was too late.

“Don’t look at the television sets!”” Rusty shouted in a choked voice.
Schema’s body was lifeless, his eyes fixed forward in a shocked stare.
“Pick him up! We have to get to the headquarters! Matz!”

As the others moved to pick up Schema’s body, attempting to displace their anguish with immediacy,
Matz stood there staring at Schema, his mouth moving but nothing coming out.

"

i... instance. instance_eval,” he stammered, watching the others hoist Schema onto their shoul-
ders. “They used instance_eval. Our own strength. How could they — what sick mind would — I
wrote that feature.”

Matz’s vision was a blur. How many Ruby programs were watching television when the code broke
through? It was mass murder. It was his fault! Schema! He clutched his head.

Rusty placed his hand on Matz's shoulder. “’Matz. We have to go and we have to go quickly. It’s not your
fault. Pull it together.”

“You — you don’t understand. They must have sent code through the airwaves.” Matz was in shock.
“Any agile program who saw it would have executed it.”

The other three looked at each other, the words sinking in. The wind blew a chill down the street.

“Rusty’s right,” Jen finally said. ““We have to go.”” The four of them hoisted Schema onto their shoulders
and began walking down the street in brisk silence. Web felt as if he had entered a dream. We want you
to go to a protest, they had said. It will be a great first trip for the group. Now he was walking on
a street he didn’t know, with strangers he had just met, carrying the body of someone whose only crime
was looking through a storefront window.

Chapter 10: Code That Writes Code (That Writes Code)

At the next block, the sounds of tires screeched around the corner, followed by the flatbed truck that
owned them. It was a strange truck, not the type you see often in cities. The truck bed was made of
plywood, with no walls, and it was painted a dull black. Two URIs were in the cab. It skidded to a stop.

“Hey! Get on! Quick!” they shouted to the group. "“We've been looking everywhere for you!”
Web looked to Jen, and Jen nodded. These were friends.

This chapter is the third and final chapter focused on advanced Rubyisms and meta-programming. You
saw in Chapter 8, “Playing with Blocks,” that Ruby lets you pass blocks of code around as if they were
variables, and you learned how to style your code to make use of this feature. Chapter 9, “Mixins and
Monkey Patches,” showed you how to inject functionality into objects, whether as a design technique
with mixins or as a monkey patch with instance_eval and class_eval. In essence, the last chapter
showed you how to dynamically modify any object’s code at run-time. This chapter goes a step further
and shows you how to write code that will dynamically modify itself.

Writing code that changes itself is very different from monkey patching. When you monkey patch, the
desired change is known in advance — decided during development by the developer. Self-modifying
code — or, perhaps better put, adaptive code — is a different ballgame. This type of code has to be written
one level of abstraction away from the change that actually takes place. Instead of writing code that
contains the changes you would like to be made, you have to write code that describes how your objects
can decide for themselves what changes need to be made. Don’t worry, though; we’re not talking about
artificial intelligence here, but rather just another powerful style of programming that the Ruby language
allows.

This chapter shows you how to write objects that have the ability to add new features to themselves
as needed at run-time. Sometimes these new features are added explicitly and proactively by adding
new methods to an object based on some macro that has been called. Other times these new features are
added implicitly, through the use of handlers that respond to method calls for which no method existed
and determine how to best fulfill the request. Both of these capabilities of Ruby are at the heart of the
streamlined experience that Rails presents to the developer.

Although the potential uses of this chapter’s concepts are great, their primary benefit lies in three simple
lines of code:

def User < ActiveRecord::Base
has_many :photos
end

These three lines of code accomplish as much for a Rails developer as do pages of Java. The extension of
the ActiveRecord: : Base class links the object to the database table of the same name and automatically
infers search, getter, and setter code for its fields on the fly. The has_many macro affects the object in

a different way, causing a series of associative methods to be added to the object dynamically as it is
parsed — that is, it writes code, which is both a scary and wonderful concept. This chapter shows you
how to accomplish both these feats and touches on even more patterns that this type of coding pairs
well with.

When reading this chapter, keep in mind that computer code always has two audiences who experience
the code in very different ways: the end-user, who experiences only the output of the code, and the
developer, who must work intimately with the code after it has been written. An often-referenced Rails
philosophy is that better code leads to developer happiness, which leads back around to better code. The

226

Chapter 10: Code That Writes Code (That Writes Code)

techniques shown in this chapter are developer focused; for every example you read here, there is almost
assuredly another way to accomplish the same end result with more traditional coding practices. This
chapter will show you, however, how to accomplish those end results with a style and concision that will
pay off in developer happiness points.

Dynamic Code and DSLs Revisited

Chapter 2, ““The Rails Concept,” mentioned that Rails attempts to create a Domain Specific Language
(DSL) for web development. The information you have been reading about in the last two chapters
provides the basis for the web-specific DSL that Rails provides on top of Ruby, and it is the reason that
Ruby is such a popular language for creating other languages.

All computer languages used to create output come in two varieties: general purpose and domain spe-
cific. This applies to both programming language and markup formats. The general-purpose category
includes languages such as Java, Python, and Ruby and formats such as XML. The domain-specific
category includes languages such as AWK and VHDL and domain-specific formats such as HTML.

Domain-specific languages have a different focus from general-purpose ones. Whereas a general-purpose
language provides a set of tools on which to build programs, domain-specific languages provide a

set of tools designed to accomplish some narrow purpose. They may still be ““general-purpose’ in the
Turing-complete sense of the word, but their entire workings and style are optimized for the accomplish-
ment of a specific category of goals.

DSLs matter because they are concise, and sometimes startlingly so. Just as human languages evolve
over time to gain more expressivity in the concepts that matter to a particular civilization, DSLs allow
computer languages to evolve to meet the needs of repetitious concepts within a particular domain.

Ruby is a gem when it comes to DSLs because, in return for building a DSL on top of Ruby, DSL
developers gain several benefits:

0 They're both domain specific and general purpose. Most DSLs are an alternative to other lan-
guages, not an addition. This means that one of the trade-offs of using a typical DSL is that you
lose the ability to easily write general-purpose code. With Ruby, you get the best of both worlds
because the DSL is crafted to piggyback on top of Ruby.

QO No PhD in compiler design is necessary. Ruby provides a way to implement a DSL without
your worrying about all the complex scaffolding needed to prop up the parsing and execution
of your own language. In other words, sit back, relax, and just implement the ““domain” part of
your DSL without worrying about the “language’ part.

Q The Ruby language is flexible. Ruby provides a malleable platform on which to code, so in
addition to writing your own Ruby-based DSLs, you can easily modify those of others.

The surge in web application development has created a corresponding surge in the popularity of
interpreted languages such as Python, Ruby, and JavaScript. Along with that surge has come much
debate about the Next Big Language — the next C, C++, or Java that will become a de facto standard
for implementation choice. Although it is too early to make any bets, another lesson from modern web
development teaches us that languages with the ability to mold themselves to a specific task create a
far more pleasant and productive development environment than languages that look and feel general
purpose no matter what their setting. In this regard, Ruby, as well as the techniques in this chapter, are

227

Chapter 10: Code That Writes Code (That Writes Code)

good candidates to use for developing your next project regardless of what the Next Big Language turns
out to be.

Code-Writing Macros

The first half of this chapter focuses on writing code macros — the type of coding that fuels features such
as ActiveRecord associations and validations in Rails. These code macros are really just class methods
that, when called with a list of arguments, define new methods on the class from which they are being
called. When you are finished with this part of the chapter, you will be able to write your own macros
that you can add to object definitions for enhanced functionality at run-time.

Creating Methods on the Fly with define_method

In the previous chapter, you saw that the eval keyword and its variants can be used to dynamically
define a method by executing a block of code containing the method definition within the scope of

a particular class. Although that strategy works, it is not ideal because it employs a generalized and
powerful execution mechanism to perform a task that should probably be given its own operator. The
define_method method provides such an operator.

The define_method operator takes two arguments, a symbol representing the method name and a block
containing the method body. Any arguments that your new method accepts should be defined as meth-
ods to the block.

define_method(:say_something) { p "Hello, world!" }

This method must be called on the class object itself, so you have a few ways to make the call, each with
different advantages:

O Inline in the class definition. This causes the method to be created immediately as the class is
parsed (just as with the other ordinary methods), but in contrast to using def ... end, it allows for
conditional method creation.

class Record
if $debug
define_method(:get_logger) { return @logger }
end
end

O From a class method. This allows you to write a method that, when executed, causes more meth-
ods to be added. This is the technique you will be using to create macros.

class Record
def self.add_method(name, proc)
define_method name, &proc
end
end

228

Chapter 10: Code That Writes Code (That Writes Code)

Q From an instance method. This allows external entities to add methods to an object via one
of its instances. It has the same effect as previous code, so you should generally avoid this type of
usage to prevent the method addition from appearing instance specific.

class Record
def add_method (name, proc)
self.class.send(:define_method, name, &proc)
end
end

Next, you will see some basic examples of define_method in action and how you can use it to create Rails
macros.

define_method Example: The Pentagon and the Kremlin

Recall the great caper between the Pentagon and the Kremlin in Chapter 8: The Kremlin contained a
request_agenda method that accepted a block containing an encryptor, which it used to encrypt and
transmit its messages back. What if functionality such as an externally defined encryptor were needed
throughout an object rather than just within one method?

Here you will use define_method to allow external code to define the implementation of two methods
critical to the MessageHandler class. The MessageHandler class cannot operate without these methods,
so it raises an error if they have not been defined.

class MessageHandler
attr_accessor :inbox
attr_accessor :outbox

def self.load_cryptors(encryptor, decryptor)
define_method :encrypt, &encryptor
define_method :decrypt, &decryptor

end

def initialize
raise "Must load cryptors first." unless
respond_to? :encrypt and respond_to? :decrypt
@inbox, @outbox = [], []
end
end

The load_cryptors method dynamically defines the encrypt and decrypt methods required for Message
Handler to function correctly. Before instantiating a MessageHandler object, the user would first have to
provide load_cryptors with its particular style of encryption and decryption.

Structuring the code in this way accomplishes a purpose similar to the abstract keyword in Java. It
allows the object designer to design around a set of required methods while leaving the actual imple-
mentation of those methods up to the developer who chooses to use the class. In Java, the class user must
define a new class that extends the abstract one. By using the preceding pattern, Ruby lets you roll both
the abstract class and the usable one into the same entity.

229

Chapter 10: Code That Writes Code (That Writes Code)

Continuing with the MessageHandler definition, you can define other methods that depend on the
decrypt and encrypt methods, knowing that they will exist at the time of object instantiation, even if
they do not yet exist at coding time:

class MessageHandler
def receive_message (message)
@inbox.push decrypt (message)
end

def send_message (message)
@outbox.push encrypt (message)
end

And so on
end

Now you'll test the code and see how it compares to abstract classes in Java. First, you attempt to create
a new MessageHandler class before defining the cryptor methods.

mail = MessageHandler.new
RuntimeError: Must load cryptors first.

The RuntimeError prevents you from being able to create a new MessageHandler, so you need to define
a set of cryptors and load them into the MessageHandler class before proceeding. You'll use the unbreak-
able rot13.

rotl3 = lambda { |text| text.tr "A-Za-z", "N-ZA-Mn-za-m" }
MessageHandler.load_cryptors(rotl3, rotl3)

mail = MessageHandler.new
This time it works!

Calling the 1load_cryptors method caused define_method calls to add the encrypt and decrypt meth-
ods to the MessageHandler object necessary for it to operate. Now you can use the object as though the
cryptor methods had been there from the start:

mail.send_message "Hello from Moscow!"
p mail.outbox
-> ["Uryyb sebz Zbfpbj!"]

mail.receive_message "Uryyb gb 1lbh, gbb!"
p mail.inbox
-> ["Hello to you, too!"]

Scope and define_method

Scope can get a bit confusing when using define_method. Because the entity containing the body of the
method to be added is a Proc, it maintains ties to its source environment. But because variables starting
with @ symbols represent special bindings to a class or an instance, the object space that a dynamically
created method has access to can be a bit confusing. Rather than dig down into the mechanisms that
cause this situation, here is an overview of what to expect from the behavior of your code:

O Locally scoped variables are bound to the local scope that created the Proc.

230

Chapter 10: Code That Writes Code (That Writes Code)

Q Class variables are bound to the class that originated the Proc.

a Instance variables are bound to the instance of the class that has absorbed the Proc as a method.

To vet the preceding assertions, here is a trial-by-example demonstration of each point. You define two
classes. The first class is a ““method provider” that provides a Proc. The second is a “‘method runner” that
defines methods dynamically from the Procs it is provided. You will define identical class, instance, and
local variables in each and see which ones the dynamic method binds to when it is called.

First, the provider, which will provide the Proc to turn into a method:

class Provider
@@var = "Provider"

def initialize
@var = "Provider"
end

def self.getMethod
var = "Provider"
lambda {
p "Class variable belongs to: #{@@var}"
p "Instance variable belongs to: #{@var}"
p "Local variable belongs to: #{var}" }
end
end

And then the Runner, which will obtain a Proc from Provider and add it as a new method:

class Runner
@@var = "Runner"

def initialize
@var= "Runner"

end

def self.add_method(name, proc)

var = "Runner"
define_method name, &proc
end
end

Next, you take the Proc from provider and give it to Runner to add using define_method:

Runner.add_method :experiment, Provider.getMethod

And finally, you run our experiment and observe the results:

runner = Runner.new
runner.experiment

Prints:

"Class variable belongs to: Provider"
"Instance variable belongs to: Runner"
"Local variable belongs to: Provider"

HH oH o

231

Chapter 10: Code That Writes Code (That Writes Code)

So you see that locally scoped variables and class variables are bound to the environment that originated
the Proc, and instance variables are bound to the environment that has absorbed it as a method.

One final note about accessing instance variables, however: You must initialize them in the object’s
constructor. Instance variables that are initialized in the body of the class definition outside any method
are not available to the dynamically created method. If the variable @var were created like this, for
example,

class Runner
@var= "Runner"

def initialize
Do nothing
@var was initialized above rather than in here
end
end

then the newly created method would not have any variable named @var in its scope.

Using define_method for Rails Macros

One of the key areas in which Ruby on Rails employs define_method is ActiveRecord associations.
Anyone who has used ActiveRecord is familiar with its macro-style associations:

class User < ActiveRecord::Base
has_many :fitness_goals
has_many :workouts, :through => :goals

.. etc

end

These associative macros are actually method calls that take place right in the body of your class
definition. As the interpreter reads in your model definition file and parses the class, it calls these
association-building methods, and numerous helper methods become available on the model class as a
result. These helper methods are created dynamically based on the arguments provided to the association
call using define_method.

In this section, you'll create your own macro that you can use just as you do the ActiveRecord associa-
tions to define helper methods on a model object. You'll call it acts_as_pig_latin, and its job will be to
create an alternative accessor method for each field on the model object that returns the pig Latin version
of its value.

First, you'll assume a method that turns a single word into its pig Latin equivalent. The following method
is borrowed from the “Ruby Tk chapter of Programming Ruby, available at http: //ruby-doc.org/docs/
ProgrammingRuby/.

def pig(word)
leadingCap = word =~ /"A-Z/
word.downcase!
res = case word

232

Chapter 10: Code That Writes Code (That Writes Code)

when /"aeiouy/
word+"way"
when /7 (["aeiouyl+) (.*)/
S2+S1+"ay"
else
word
end
leadingCap ? res.capitalize : res
end

To create the acts_as_pig_latin macro, add the following code at the end of the config/environment
.rb file in a Rails project. You might want to throw the pig method inside the ActiveRecord: :Base body
as well, if it is not defined elsewhere.

class ActiveRecord: :Base
def self.acts_as_pig latin
column_names.each do |column|

meth _name = :"#{column.to_s}_piglatin"
define_method (meth_name) do
send (column) .split (" ").map{ |word| pig word }.join " "
end
end

end
end

This code defines acts_as_pig_latin as a class method on ActiveRecord: :Base, which means that it
can be called directly from the body of a class as it is being parsed by the interpreter, same as with the
ActiveRecord associations that you are familiar with. The acts_as_pig_latin method iterates over each
column name managed by that particular ActiveRecord class and defines a method for each column that
returns the Pig Latin version of an instance’s value for that particular column.

The following line:

meth_name = :"#{column.to_s}_piglatin"

determines the name of the new pig Latin method for a column by appending the suffix _piglatin to
the existing column name. Next, a new method by that name is defined. The body of the method calls the
existing accessor for the column value and then applies the pig function to each word in the result.

define_method (meth_name) do
send(column) .split (" ").map{ |word| pig word }.join " "
end

Test this code by adding the macro to an existing ActiveRecord model inside a Rails project you have
available:

class User < ActiveRecord: :Base
acts_as_pig_latin

.. class continues
end

233

Chapter 10: Code That Writes Code (That Writes Code)

Run the Ruby on Rails console by typing script/console from a command prompt and examine the
changes it has made on your model object. Create a new user with User.new and examine the methods
on it. In the code that follows, we filter the user.methods results by rejecting any method that does not
end in the suffix _piglatin.

>> user = User.new

=> #<User id: nil, name: nil, nick: nil, created_at: nil, updated_at: nil>
>> user.methods.reject { |meth| not meth.to_s[/piglatin$/] }

=> ["id_piglatin", "name_piglatin", "nick piglatin", "created_at_piglatin",
"updated_at_piglatin"]

From the return value of the user.methods call, it is apparent that several methods now exist on the User
object containing the suffix _piglatin. The acts_as_pig_latin macro caused one method per column
to be created on the object. Test the functionality by setting the name of your new object and then calling
the corresponding pig Latin method:

>> user.name = "Grace"
=> "Grace"

>> user.name_piglatin
=> "acegray"

Macro Summary

Code macros are a powerful meta-programming technique that can help you write libraries that not only
add end-user functionality but also speed your development process. In contrast to the monkey patching
examples from the previous chapter, code macros often contain the intelligence necessary to make their
own decisions about what code to add to a class on your behalf. In the pig Latin example of the preceding
section, the acts_as_pig_latin macro inspected the fields that existed on an ActiveRecord object and
then added one extra method for each of those fields. If you call this macro on an object with four fields,
it saves the developer from having to write four methods; if you call it on an object with one hundred
fields, it saves the developer from having to write one hundred additional methods.

Although the macros you write probably won't be pig Latin—related, this basic strategy of adding func-
tionality to your objects is a step on the road toward developing your own Ruby-based DSL. It is the
core idea behind Rails associations and validations, and also behind the large set of ““acts as” plug-ins
available for the Rails framework.

Calling Methods That Don’t Exist: Objects
That Adapt to the Way You Use Them

APIs are usually written like the menu at a restaurant. It may be long and extensive, but what you see is
what you get. Ruby is different, though, because it allows you to craft what might be called ““meta-APIs.”
Rather than define the list of methods that the API contains, you define your own interpreter that takes

any incoming method call and attempts to determine a plan of action in response. Although this style of
coding is not appropriate for every situation, it opens a powerful set of patterns that you can use in your
own coding to make your code more intuitive and your development more efficient.

The key is that Ruby objects do not support methods — they respond to messages. Recall from Chapter 8
that Ruby is a message-passing language. Calling a method on an object doesn’t cause the underlying

234

Chapter 10: Code That Writes Code (That Writes Code)

machine code to immediately push your scope on the stack and jump to the method’s address in memory.
Instead, it sends a message to the object, asking it to execute the method that was called. You saw this in

code with the send method available on all objects:

user.send(:greet, "Matz") # Equivalent to user.greet("Matz")

The interesting side effect of executing methods by message passing is that nonexistent methods are
not necessarily catastrophic error conditions the way they would be in method-calling languages; they
are just messages that the receiver does not have a hard-coded response to. All objects in Ruby handle
messages that they are not familiar with by passing them to a special function, method_missing, which
acts as a catch-all opportunity to handle any messages not caught by the methods attached to the object,

as Figure 10-1 illustrates.

Receiver

Method Call Encountered

Method exists with

receiver.message(*args) ST TEI B A e

Yes
— method.call(*args)

lNo

method_missing.call(message, *args)

Figure 10-1

Not surprisingly, the default implementation of method_missing in Ruby’s Kernel module just raises a
bunch of exceptions: It determines what the problem was (an undefined method? a violation of private

access?) and then raises the appropriate error.

static VALUE
rb_method_missing(argc, argv, obj)
int argc;
VALUE *argv;
VALUE obj;

ID id;
VALUE exc = rb_eNoMethodError;

// * SNIP * (removed by author)

if (last_call_status & CSTAT_PRIV) {

format = "private method '%s' called for %s";

} else if (last_call_status & CSTAT_PROT) {

format = "protected method '%$s' called for %s";

} else if (last_call_status & CSTAT_VCALL)

format = "undefined local variable or method

exc = rb_eNameError;
} else if (last_call_status & CSTAT_SUPER)

format = "super: no superclass method '%s'";

}

// * SNIP *

exc = rb_class_new_instance(n, args, exc);

'$s' for %s";

235

Chapter 10: Code That Writes Code (That Writes Code)

ruby_frame = ruby_ frame->prev; /* pop frame for "method_missing" */
rb_exc_raise(exc) ;

// * SNIP *
}

Seeing this code for yourself is important because it clearly demonstrates that the errors raised when mak-
ing bad method calls come not from the Ruby interpreter but rather from the Ruby object that received the
bad method call. In contrast to many other languages, bad method calls are handled entirely from within
the flexible world that the programmer has control over. This default implementation of method_missing
in the preceding code snippet is responsible for the errors you are accustomed to seeing when you make
a bad method call:

irb(main) :001:0> arr = Array.new

=> []

irb(main) :002:0> arr.eat_a_sandwich

NoMethodError: undefined method 'eat_a_sandwich' for []:Array
from (irb):2

Because you now know that the NoMethodError thrown on a bad method call is coming from just a
regular method and not from the Ruby interpreter, a light should be going off in your head: I can override
this! And that is exactly what you’ll do next.

Some Basic Examples

You start by trying to call a method that doesn’t exist:

rutabaga
-> NameError: undefined local variable or method 'rutabaga' for main:Object

The NameError raised by this method call is being handled by the default method_missing implementa-
tion. The method_missing method takes two arguments. The first is the name of the method called; the
second is a list of all the arguments passed to the attempted method call. You'll override this method to
cause it to simply print a simple statement instead:

def method_missing(method, *args)
p "You called #{method} (#{args}).. Is that a vegetable?"
end

When you call rutabaga again, you no longer see the NameError raised but instead see your message:

rutabaga
-> You called rutabaga().. Is that a vegetable?

If you want to still allow Ruby’s default error handler to run, you can append a call to super at the end
of your custom method_missing implementation:

def method_missing(method, *args)
p "You called #{method} (#{args}).. Is that a vegetable?"
super

236

Chapter 10: Code That Writes Code (That Writes Code)

end

rutabega
-> You called rutabaga().. Is that a vegetable?
-> NameError: undefined local variable or method 'rutabaga' for main:Object

Recall from previous chapters that any method defined outside an object you have referenced (that is,
“in the bare”) is really being defined on the root Object class. Defining method_missing in the preceding
manner therefore overrides method_missing implementation for all objects in Ruby. To demonstrate this,
you'll create an array of symbols and call a method that does not exist. Even though the missing method
call is on an Array object, the method_missing implementation defined previously will catch it as you
have last defined.

veggies = [:turnip, :carrot, :daikon]
veggies.eat
-> You called eat().. Is that a vegetable?

-> NameError: undefined local variable or method eat' for main:Object

Under normal use, you probably won’t be overriding the root implementation of method_missing
because the consequences are too far reaching. Instead, you will most often write a custom handler for a
particular class that you write. Implementing the handler is the same, though — just define method_
missing inside the class definition.

Example: A Shortcut for Array.each

The Array class is a great place to begin because there are numerous ways to use its method_missing
implementation to reveal the characteristics of the contents of the array. In this section, you'll write a
shortcut for the Array.each method that allows you to avoid using a block for simple operations.

First, you'll set up the cast of characters to help test the Array class’s new features. An Item is anything
with a name that can be washed or thrown at something. A Veggie is an Iten that can also be eaten. A
Trash is an Item that can also be recycled.

class Item
attr_accessor :name
def initialize (name)
@name = name.to_s

end
def wash

p "One #{@name} washed!"
end

def throw_at (person)
p "One #{@name} thrown at #{person}"
end
end

class Veggie < Item

def eat
p "One #{@name} eaten!"
end

237

Chapter 10: Code That Writes Code (That Writes Code)

end

class Trash < Item
def recycle
p "One #{@name} recycled!"
end
end

And, of course, you need an array of vegetables:
veggies = [:turnip, :carrot, :daikon] .map({ \name| Veggie.new(name) }

Normally, if you wanted to perform something on each of the members, you would use block-based
iteration. You can override method_missing to avoid having to use a block when you just want to call a
single method on all the objects in the array. So rather than write this:

veggies.each do |veggie|
veggie.eat
end

you will be able to write this instead:

veggies.eat_each

Rather than go right for the method_missing implementation, you'll define a method on Array that has
the same signature as the send method but passes whatever it gets directly to each element in the array.
You'll call this method thunk, because it thunks each element of the array with the message it receives.

class Array
def thunk(message, *args)
self.each do |item|
args.empty? ? item.send(message) : item.send(message, args)
end
end
end

Using the thunk method, you can send a message to each item in the array, such as this:

veggies.thunk(:eat)

Prints:

"One turnip eaten!"
"One carrot eaten!"
"One daikon eaten!"

This code fails if one of the objects within the array does not accept the message passed to thunk, how-
ever. Although you can’t prevent this possibility, at least the thunk method should attempt to preserve
an all-or-nothing behavior so that an error does not cause some objects to change state while leaving
others intact. Following is a new version of thunk that first checks to see whether all contents of the array
support the given message, raising an exception if they don’t.

238

Chapter 10: Code That Writes Code (That Writes Code)

class Array
def contents_support? (message)
self.inject (true) do |all_ok, item|
all_ok = all_ok & item.respond_to? (message)
end
end

def thunk (message, *args)
if contents_support? (message)
self.each do |item|

args.empty? ? item.send(message) : item.send(message, args)
end
else
raise "Not all contents of #{self.inspect} respond to method #{method}"
end
end

end

Now if you add a piece of Trash to your array of veggies:

tin_can = Trash.new("tin can")
veggies << tin_can

the thunk method will correctly prevent you from being able to call the eat method on the array by
raising an exception:

veggies.thunk :eat

-> RuntimeError: Not all contents of [#<Veggie:0x8825c @name="turnip">,
#<Veggie:0x88248 @name="carrot">, #<Veggie:0x88220 @name="daikon">, #<Trash:0x88054
@name="tin can">] respond to method eat

Now that the thunk method has a bit of error checking (and after you’ve removed the tin can from the
array with veggies.delete tin_can), you are finally ready to weave thunk into the method_missing
implementation.

An important part of using method_missing well is determining extensible ways to convert the missing
method name into functionality. Here, you will apply thunk only if the missing method name ends in the
characters _each. This accomplishes two goals: First, it unambiguously marks out a specific region of
the namespace of possible method names to direct to thunk, leaving all others available for other tasks.
Second, it makes the code using this new feature clear to a casual observer — method_missing might
permit feats that appear magical, but you should always try to make your code clear and simple.

class Array
def method_missing(method, *args)
if method.to_s[/_each$/]
real_method_name = method.to_s[0..-6].to_sym
thunk (real_method_name, *args)
else
super
end
end
end

239

Chapter 10: Code That Writes Code (That Writes Code)

Test this dynamic functionality by calling a few methods on the veggies array that end in _each.

veggies.wash_each

"One turnip washed!"
"One carrot washed!"
"One daikon washed!"

veggies.recycle_each

RuntimeError: Not all contents of [#<Veggie:0x88270 @name="turnip">,
#<Veggie:0x8825c@name="carrot">, #<Veggie:0x88234 @name="daikon">] respond to
method recycle

veggies.throw_at_each "the giant monster standing behind you as you read this!"
"One turnip thrown at the giant monster standing behind you as you read this!"
"One carrot thrown at the giant monster standing behind you as you read this!"
"One daikon thrown at the giant monster standing behind you as you read this!"

Beware of Catching Everything

In the last example of the previous section, I gave two reasons for using the suffix _each to mark a method
that should be passed to the new thunk operation: It defines an unambiguous subset of the method
namespace to use for thunk, and it makes the resulting code easy to understand. A third reason that
this strategy is a good one is that it makes deciding when to fall back on the default implementation of
method_missing for error-catching purposes easy. Under most circumstances, it is important to fall back
on the default implementation because it provides a predictable way for your code to fail. This becomes
especially important in Ruby because of its lax rules regarding parentheses. What could be a variable
could also be a method:

is_admin_user # Is this a variable or a method call? No way to tell!

This means that if you create a poor custom implementation of method_missing, your Ruby object will
direct all mistyped variable names to method_missing rather than throw an error, thus changing the
failure semantics of your code. Understandably, that is not a good situation to find yourself in.

With the thunk implementation in the last section, the expected error is raised if you try to perform a
method outside the scope of _each that does not exist:

veggies.puree
NoMethodError: undefined method 'puree' for #<Array:0x875c8>

But watch what happens if you take out the fallback to the default method_missing implementation by
removing the else { super } segment of code from the overridden method_missing body.

class Array
def method_missing(method, *args)
if method.to_s[/_eachs$/]
real_method_name = method.to_s[0..-6].to_sym
thunk (real_method_name, *args)
end
No else {super} clause anymore

240

Chapter 10: Code That Writes Code (That Writes Code)

end
end
veggies.puree # This call should fail
returns nil ... but it doesn't

By not remembering to fall back to the super implementation of method_missing, two outcomes occur,
both of which risk hiding errors in your code:

0 Any method calls to the object will succeed, even though some probably shouldn’t.

0 Any mistyped variable names within the object’s definition will be sent to method_missing, even
though this is certainly incorrect.

The lesson: Always think about the scope of messages that you would like to accept with your cus-
tom method_missing implementation, and make sure to fall back to the default implementation in any
other circumstance. An effective way to do this consistently is to implement your dynamic code the
way you did it with thunk. Rather than have method_missing implement the extra functionality, have
method_missing operate as a router, matching messages to elsewhere-defined functionality and failing if
a match cannot be made.

method_missing Patterns

The many uses of method_missing tend to fall into a few categories or patterns. Thinking about your code
in terms of these patterns will help you decide when it might be appropriate to use method_missing as
an implementation option.

0 Data-driven objects: When your code object exists to make an external and dynamic data struc-
ture available, and you’d like to let that data structure dictate the way your code is used.
Examples include:

Q ActiveRecord: Each ActiveRecord object reflects on its corresponding table in the database
schema to provide getters, setters, and search functionality.

Q ActiveRDF: The RDF equivalent of ActiveRecord creates objects around RDFS resources
and uses method_missing to interpret method calls as getters and setters that operate on
the underlying graph connected to a resource.

Q Dynamic Dictionaries: The foreign language dictionary that you will create in a few pages
wraps around a web-based dictionary to provide translation.

Q Creative API: When you would like to provide an API that is used for the construction of a doc-
ument. Calls made into this API are dynamically translated into entities within the document.

Q XML Builder: The Builder class in Rails provides a way to easily construct XML documents
by simply writing Ruby code. It interprets messages sent to method_missing as requests for
the creation of new XML entities.

0 Easy reading methods: When you want to provide English-like methods instead of parameter-
based ones (such as Person.find_by_name).

Q ActiveRecord — ActiveRecord provides search functionality through method_missing when the
missing method involves the prefix find_by. For example, the method call Users. find_by_

241

Chapter 10: Code That Writes Code (That Writes Code)

first_name (name) would perform a query on the first_name column for all records in which it
equals the provided name argument.

0 Facades: When you employ the Facade pattern to wrap the functionality of other objects and ser-
vices within an object.

Q Aspect-style wrappers: The wrapper that you will see implemented in the following section
provides a facade for an object while allowing before and after filters to be inserted around
its execution.

Each of these patterns will be highlighted throughout the rest of the chapter in examples, some using the
Rails framework and others operating independently of Rails.

Implementing method_missing Patterns

This section looks at how you might apply three of the different method_missing patterns in your Rails
projects: facades (and filters), data-driven objects, and creative APIs. These examples mimic the way that
meta-programming is used in the Rails framework and will make you better able to extend it and develop
with it.

Facades

The method_missing feature is a great way to implement the facade pattern with some extra perks.

A facade is a frequently used pattern in which an object (the facade) wraps one or more other objects
and provides a unified interface that is simpler or more appropriate for some developer audiences. The
method_missing facade, which I call a wrapper (the class name will be Wirapper), contains the object
that is to be wrapped and simply passes all unknown methods straight through to the contained object.
By default, this facade behaves exactly like the interface of the contained object, passing calls straight
through. Each call that the facade developer wishes to customize can simply be implemented manually
as a method on the wrapper.

Here is an example of how you might implement the wrapper.

class Wrapper
def initialize(obj)
@obj = obj

end

def method_missing(meth, *args, &block)
result = @obj.send(meth, *args, &block)
result

end
end

You can use this facade around any object by passing the object to a new Wrapper instance. The following
code shows how you might wrap an array of symbols:

wrapped_array = Wrapper.new [:barley, :hops, :water, :yeast]

242

Chapter 10: Code That Writes Code (That Writes Code)

Any method call that does not exist on the Wrapper class will be passed directly through to the contained
object:

p wrapped_array.size
Prints: 4

p wrapped_array.join(', ')
Prints: barley, hops, water, yeast

Note that methods that do exist on the Wrapper object (such as inspect) will not get handled by method_
missing and thus will not get sent to the contained object.

p wrapped_array.inspect
Prints: #<Wrapper:0x89eel @obj=[:barley, :hops, :water, :yeast]>

To create a true facade, you will have to override these methods manually to cause them to pass
through to the contained object.

Adding Filter Support to the Wrapper

After you have constructed a facade around an object, it is easy to begin implementing aspect-style
filtering to simulate the way that Rails controllers allow before, after, and around filters. The key is
that by implementing a dynamic facade around the object, you have taken control of the context of the
execution of its methods. Rather than use method_missing to pass straight through to the methods on
the contained object, you can maintain lists of Proc objects that you can call before, after, and around the
inner method call takes place.

For this example, you will just implement around filters. Start by adding some scaffolding to the Wrapper
definition to add, remove, and store Procs that will act like filters.

class Wrapper

def initialize(obj)

@obj = obj
@around_filters = []
end

def add_around_filter (proc)
@around_filters.push proc
end

def remove_around_filter (proc)
@around_filters.delete proc

end

end

Next, you need to establish a set of rules that an around filter will need to conform to in order to work.
Because you must pass control to the around filter, and because, by definition, the around filter executes

243

Chapter 10: Code That Writes Code (That Writes Code)

around the inner method call, these rules form an informal contract that must be followed for the wrapper
object to function correctly. Similar rules are set up in the Ruby on Rails documentation for controller
filters. Here is a quote from the around_filter Ruby Docs in Ruby on Rails:

To use a block as an around_filter, pass a block taking as args both the
controller and the action block. You cannot call yield directly from an
around_filter block; explicitly call the action block instead.

Your around filter will use a similar set of rules:

1. Each around filter will be implemented as a Proc object.

2. Thearound filter takes two arguments. The first is the name of the method call that
prompted the execution of the filter. The second is a Proc representing the code that is being
wrapped around to make that method call possible.

3. The around filter is responsible for performing the call method on the provided Proc if the
contained functionality is to be executed. (There are some circumstances in which the around
filter may decide not to call its enclosed functionality. An authorization-performing filter, for
example, might raise a MethodCallNotAuthorized exception instead.)

4. The around filter must return the value returned by the Proc provided to it.

Together, these rules allow for a simple filter implementation that you will see in a moment. They also
provide enough information to write filters without knowing how the mechanism that manages them
is implemented. You'll write two filters to use with the wrapper class before you even implement the

extension that will allow their execution:

The first, timer, records the time it takes to perform a particular operation:

timer = lambda { |method, proc|
tl = Time.now

result = proc.call
t2 = Time.now
p "Method call to #{method} completed in #{t2 - tl}"

result

}

The code for the timer filter is a Proc object that takes the required two objects (method and proc),
executes the Proc (result = proc.call), and returns the result object as its own return value. Around
the Proc’s execution, the current time is recorded, and afterward, a statement is printed to the console
containing the time that the method call took to complete.

The second filter you will implement shows an alternative way to implement the pig Latin conversion
shown earlier in the chapter. The first time you saw this conversion, it was performed as a preparatory
step using a macro called acts_as_pig_latin. This macro iterated over the methods on the object and
used define_method to create an alternative set of methods that wrapped the existing ones but returned
the result in pig Latin. Now, using method_missing and your Wrapper class, you will implement the
pig Latin conversion in an aspect-oriented fashion as a filter that can be applied to and removed from a
wrapped object without your having to modify that object’s code.

244

Chapter 10: Code That Writes Code (That Writes Code)

pig_latin = lambda { |method, proc|
result = proc.call
return pig(result) if result.is_a? String
return pig(result.to_s).to_sym if result.is_a? Symbol

result

}

The pig Latin filter technically behaves in the spirit of an after filter. It immediately executes the wrapped
code, inspects its result, and converts it to pig Latin if it is a string or a symbol.

You have a way to add and store filters within the Wrapper object, a set of rules describing how fil-
ters should behave, and two example filters ready to try out. Now you must find a way to integrate
filter-calling into the method_missing implementation of Wrapper. In the same fashion used before, you
will implement the filter-wrapping code in a stand-alone method, using method_missing just to delegate
incoming messages to that method.

The embed method that follows acts like the send method in that it takes a message, arguments, and
optional block and executes it against the contained @obj object. It is different in that it also takes an
index into the filter array to specify a filter to wrap around the method call.

def embed(filter_num, meth, *args, &block)
if (filter_num >= Qaround_filters.size)
return @obj.send(meth, *args, &block)
else
return Qaround_filters.at(filter_num).call (meth, lambda {
embed (filter_num + 1, meth, *args, &block)
}
end
end

If the array index equals or exceeds the size of the filter container, the embed method simply executes the
requested method call on @obj. If the array index does not exceed the filter count, it executes the specified
filter, passing it in a block containing another call to embed with an incremented filter index. In this way,
embed acts as a recursive method with the call to @obj as a terminating base case.

To complete this example, redefine method_missing to pass straight through to the embed method:
def method_missing(meth, *args, &block)

embed (0, meth, *args, &block)
end

Finally, you create a new wrapped array using the new code and add your two filters:
my_array = Wrapper.new [:barley, :hops, :water, :yeast]

my_array.add_around_filter timer
my_array.add_around_filter pig_latin

Now try calling a few methods to watch the filters in action:
p my_array.size

"Method call to size completed in 2.8e-05"
4

245

Chapter 10: Code That Writes Code (That Writes Code)

p my_array.at(l)
"Method call to at completed in 5.9e-05"
:opshay

This example demonstrates that method_missing enables more than just dynamic decisions about which
method to call. It also provides a way for you to wrap objects and manage the context under which they
execute.

Data-Driven Objects: Building a Language Translator

Data-driven objects are objects that exist to make some externally defined data object available. They are a
generalization of the ActiveRecord pattern, which describes objects that wrap around a database record
to expose its field. Data-driven objects include objects that follow the ActiveRecord pattern, but they
may also describe objects that wrap around XML entities, RDF or OWL entities, or even remote services.
Programming with method_missing is an excellent way to create data-driven objects in your code.

In this example, you will construct a data-driven object that maps around a virtual dataset: human lan-

guage. You will treat an external service (Google Translate) as a remote object that can receive messages
in the source language and respond to them with the corresponding message in the destination language.
This basic operation demonstrates the way that ActiveRecord is able to ““magically” wrap around your
database schema automatically without having to dig into the scores of database-specific code that per-

forms the legwork to implement the larger idea.

First, you set up the scaffolding around your object. Two constants are defined: GoogleTranslateUri
contains the address of the remote translation service, and ResultRegex contains a regular expression
that will extract a translation result from the web page. In addition, the constructor takes two variables,
from and to, that represent the source and destination languages.

class Translator
require 'net/http’
GoogleTranslateUri = URI.parse 'http://translate.google.com/translate_t'
ResultRegex = /<div id=result_box dir=ltr>(["<]*)<\/div>/

def initialize(from, to)
@from, @to = from, to
end
end

To continue the pattern described previously, you implement the translation functionality in a method
outside method_missing so that you can save method_missing for just routing incoming messages. The
perform_translation method makes an HTTP post to Google’s Translate service and extracts the trans-
lation result using the ResultRegex pattern.

def perform_translation (text)
response = Net::HTTP.post_form(GoogleTranslateUri, {
'hl'=>'en"',
'ie'=>'UTF8"',
'text'=>text,
‘langpair'=>"#{@from} |#{@to}"
})

246

Chapter 10: Code That Writes Code (That Writes Code)

response.body[ResultRegex]
$1

end

To complete the example, you direct method_missing to pass any unknown messages through to the
perform_translation method.

def method_missing(meth, *args)
perform_translation(meth.to_s)
end

Try the translator by instantiating a copy with English and Spanish. Good Unicode support in Ruby is
just now beginning to emerge as of Ruby 1.9, so languages that use the ASCII character set are the safest
to stick with for the code here.

spanish = Translator.new :en, :es

p spanish.library
Biblioteca

p spanish.computer
Computadora

To translate a phrase with multiple words, just use the send method to request a response from the
object:

p spanish.send "Quick! Hold my cheese sandwich!"
Répido! Mantenga mi sandwich de queso!

Testing a few simple words and phrases with the Translator object, notice the similarities to Active
Record models that make data-driven objects with method_missing a pleasant paradigm to program
with. The object exists only to broker a connection between some data source and the code developer. It
has no knowledge of the actual data that it serves as a facade for. Routing via method_missing is used to
translate method calls into requests for data operations.

Creative APIs (The XML Builder)

The code example of Rails-style method_missing code is the creation of Creative APIs. A Creative API is
an API that exists to help the developer use code to build a document for export. Creative APIs are differ-
ent from regular document-centric APIs in that they provide little if any methods besides a constructor.
The “API” part of a creative API is defined implicitly by the developer’s calls to it. In other words, every
conceivable method call is part of the API, and method_missing is used to catch these method calls and
translate them into structures in the document for export.

The Ruby XML Builder is the best example of such an API, and it is a good example of how a very small
piece of code can produce a powerful and complete library if used correctly. At this point in the chapter,
you can probably guess how the implementation works: Each message sent to the Builder object is
interpreted as a request for a new XML tag to be created. Any hash tables passed as arguments to the
message are interpreted as tag attributes. The tag’s content is determined by one of three possibilities. If

247

Chapter 10: Code That Writes Code (That Writes Code)

the message has any string arguments, the tag contains the concatenated values of those arguments.

If the message contains a block, the tag wraps around the execution of the block (which may create more
tags). If neither of these situations holds, the tag is empty. Figure 10-2 contains a simplified depiction of
the core decision making of the Builder object.

Open Tag (<message_name>)
Any arguments that can be interpreted
as a hash are added as tag attributes.

non-hash arguments.:;\/iflock?

append yield

(to the current document) (to anothermethod_missing call)

N\

Close Tag (<message_name>)

N J
Figure 10-2

The XML Builder represents a quintessential example of Ruby style. Its functionality is the same as
document builders in Java and other languages, but it exposes its functionality using method_missingin
the novel way that Ruby is known for.

Reflection

I've covered a lot of ground in the last three chapters about ways to design and write code in Ruby
that take full advantage of its special language characteristics. Many of these techniques have involved
dynamically modifying code, whether to affect the behavior of an object created by someone else or

to craft objects of your own that can be molded by their environment. Just as important as being able to
change an object is the ability to reflect upon that object — to inspect its structure and see what is already
there. This section provides an overview for some of Ruby’s reflection capabilities that allow you to
inspect an object to see what it is made of.

Reflection can be useful both for run-time logic as well as debugging. During run-time, these methods
can help your dynamic code be more intelligent about the way it handles objects. Because Ruby is a
duck-typed language, sometimes you have to use reflection to inspect whether an object you have been
provided contains the capabilities you require, resolving type-related errors before they happen.

When you are debugging, the following methods can be invaluable tools for learning and observing how
your dynamic code is behaving. Self-modifying code is difficult to write, and the best way to get a better
feel for it is to boot up an irb shell, try a few techniques, and use these reflective methods to examine
their effects.

248

Chapter 10: Code That Writes Code (That Writes Code)

Variables and Constants

You can use the following methods to inspect the variables and constants that are registered for an object:

Method Description

class_variables Returns all class variables
instance_variables Returns all instance variables of a class instance
constants Returns all constants defined within a class

As an example, consider the following two classes. The parent class, Photo, defines a class variable,
@@favorite_color, an instance variable (@name), and a constant (Color). All three of these variables are
given values. The child class, MagazinePhoto, inherits from Photo and defines its own instance variable,
@magazine, and also defines a second constant, PaperType.

class Photo
attr_accessor :name
Color = true
@@favorite_color = :forest_green

def initialize(photo_name)
@name = photo_name
end
end

class MagazinePhoto < Photo
attr_accessor :magazine
PaperType = :glossy

def initialize(photo_name, mag_name)
super (photo_name)
@magazine = mag_name
end
end

Next, you will call the preceding reflective methods to see how they report the variables of a class and
how they handle the object hierarchy.

First, you ask the child class for its constants and see that you get a list of the constants defined both on
the child and parent:

p MagazinePhoto.constants
-> ["PaperType", "Color"]

Asking the child class for its class variables, you arrive at a similar result:

p MagazinePhoto.class_variables
-> ["@@favorite_color"]

249

Chapter 10: Code That Writes Code (That Writes Code)

Finally, instantiating an instance of the child class and asking it for its instance variables, you receive a
list of both the MagazinePhoto and Photo variables as well:

mp = MagazinePhoto.new("Polar Bear", "Outdoors Magazine")
p mp.instance_variables
-> ["@name", "@magazine"]

Note that Ruby’s variable initialization is lazy: The attr_accessor method alone does not cause instance
variables to be created, but rather just the accessor and mutator methods that provide access to them.
That means that the instance_variable method returns only those variables that have actually been
initialized with some value. In the following class, the @variable instance variable is not initialized in
the constructor as it is in the preceding code:

class LazyInit
attr_accessor :variable
end

Calling the instance_variables method on a newly created instance, you see that the instance isn’t
aware of any instance variables yet:

laz = LazyInit.new

p laz.instance_variables
> [1]

Only when you set the variable does it appear in this list:

laz.variable = "Hey!"

p laz.instance_variables
-> ["@variable"]

Methods

Ruby provides several ways to examine the methods that are registered for a class, as well, as listed in
the following table.

Method Description

instance_methods Returns all public instance methods on the receiver

public_instance_methods Same behavior as instance_methods

private_instance_methods Returns all private instance methods on the receiver

protected_instance_methods Returns all protected instance methods on the receiver

singleton_methods Returns an array of the names for all singleton methods on
the receiver

250

Chapter 10: Code That Writes Code (That Writes Code)

Any of the methods in the preceding table takes an optional Boolean argument that specifies whether to
include inherited methods in the return results. By default, the value of this argument is set to true. If
you pass in false instead, only those methods explicitly defined for the receiver will be returned. Watch
the difference between these two behaviors demonstrated in the following segment of code. You'll define
two classes, a parent class Person and a child class Surfer, each with a singleton class method.

class Person
def Person.hi
"Hello!"
end
end

class Surfer < Person
def Surfer.bye
"Peace out"
end
end

When calling singleton_methods on Surfer with the implicit true parameter, both methods defined in
Person and Surfer are returned. When calling singleton_methods with false as an argument, only the
methods defined in Surfer are returned.

p Surfer.singleton_methods
_> [nhin, "bye"]

Surfer.singleton_methods (false)
-> [nbye n]

Ei e}

The rest of these methods work just as you would expect them to given their descriptions. Try running
the irb shell and experimenting with them to get a feel for how to use them!

Modules

Recall from Chapter 9 that mixins enable you to inject functionality contained within a module into a
class. Objects in Ruby still conform to a strict, single-parent hierarchical model, but mixins allow them to
reap many of the benefits of multiple inheritance.

Method Description

included_modules Returns a list of all modules included in the
receiver’s class

Calling this method on the String class, we see three modules included: Enumerable, Comparable, and
Kernel.

irb(main) :004:0* String.included_modules
=> [Enumerable, Comparable, Kernel]

251

Chapter 10: Code That Writes Code (That Writes Code)

If you wanted to see which methods on the string are covered by one of these modules, you can use the
instance_methods method just covered:

irb(main) : 005:0> Comparable.instance_methods
=> [I|::H, II>:lI, "<"/ "<:"/ I|>l|, "betweel’l?"]

Summary

This chapter completes the three-chapter segment on advanced Ruby. Although these chapters do
not deal with web development specifically, they are incredibly important to Rails-based developers.
Many of the features of Rails are “nice to have,” but it is the combination of these features through
meta-programming techniques such as define_method and method_missing that make Ruby on Rails
the framework that it is. By understanding how to develop advanced Ruby, you gain a deeper under-
standing of how to craft reusable code that flows as well as the Rails framework does when it comes to
web-related tasks.

The previous two chapters discussed various methods of executing code: Procs, blocks, mixins, monkey
patching, and a lot of scope issues. This chapter built on that foundation by moving into dynamic object
behavior and modification. Using define_method, you were able to define object macros that constructed
methods on the fly at run-time. Using method_missing, you were able to create message handlers that
enabled objects to respond to methods even if they did not exist.

The next chapter returns to Rails-specific topics and discusses issues related to schema development. The
database may not be the most exciting part of your web application, but in many ways it is the keystone
that holds everything together. Chapter 11, “How I Learned to Stop Worrying and Love the Schema,”
covers Rails-style schema migrations, team schema management, and tricks for getting the most out of
your database tables.

252

11

How | Learned to Stop
Worrying and Love
the Schema

The elevator doors slid open to reveal a futuristic command center worthy of monitoring the
Internet itself. It should be so worthy — that is exactly why it was built. Deep in the heart of the Big
City, unbeknownst to all but a few, was the INOC, the Internet Network Operations Center.

““What do you mean we can’t track them!”” A deep, gruff voice boomed from the heavyset man standing
behind the analysts.

“They don’t have network connectivity, sir. There’s no way to get a trace,”” a URI at one of the terminals
said nervously.

“Well, I need a trace!”” the head man shouted. “Bryant! What do you have over there? Where’s our
exploratory team?”’

A man on the side of the room almost dropped his coffee upon being called out. *Ummm,” he stalled,
shuffling through scattered papers. The stalling saved him, because the man in charge soon noticed Web
and the others standing in front of the elevator doors.

“Web! It’s you!”" he strode across the room to the group, not noticing Schema’s fallen body until he ot
there. His voice lost its military bark and his expression softened.

“Schema, too,”” he said quietly, shaking his head. “’None of us saw it coming.”” He looked up at Jen.
“I'm glad the rest of you are safe. Come with me into the briefing room and I'll catch you up on what’s
happening.”

The glass-walled briefing room sat off to the side of the INOC and had just enough room to fit the large
conference table that had been installed. Jen, Rusty, Matz, and Web sat on one side of the table with the
man, who Web now knew was General Operand, on the other side.

Chapter 11: How | Learned to Stop Worrying and Love the Schema

The General spent half an hour explaining the events that had unfolded. Web listened intently. Jen and
Rusty battered him with questions. And Matz stared silently into the empty space in front of him. He
hadn’t spoken since the street.

Matz was right — they had broadcast an exploit across the television waves that destroyed the code of
any Ruby program who happened to encounter it. It had caught hundreds off quard that they knew about;
maybe there were thousands more.

“But what about the toasters?’’ Jen protested. ‘It doesn’t make sense.”

““We misread the toaster intel, Jen. Flying Toasters was the name of the virus they broadcast. The screen-
saver purchases were just a ploy.”

The General explained to them that the URIs on reserve were being called together to mount an offensive.
Root DNS Server buildings were being used as the rendezvous points. The on-duty teams that were
ready and waiting had already been sent out.

“They hit us hard with a surprise attack up front, and it’s going to get harder,” the General said, holding
nothing back. “Frankly, I'm not sure how to proceed. We know that at some point, they have to attack
us in the real world, but we can’t track their movements because the compilers come from another age.
They're all off the grid.”

“If we don’t figure something out soon, I'm afraid it will be too late.”” He looked at Web with an expres-
sionless face and said quietly, “’I'm sorry, Web.”

Matz looked up from his blank gaze and straight at the General.

“General,” he cut in, ‘I think I know what to do.”

The database is the unsung hero of web development. The web page provides the aesthetics and
excitement, and the application logic provides the features; it’s easy to see how the off-the-shelf data
repositories get forgotten in the mix. But at the same time, they are the keystone of web application
development because they provide the single and reliable source into which all state for the application
is kept. This chapter discusses how to streamline database development and use the Rails framework to
enhance the simple object model that is built into databases. It starts with the concept of migration-based
development and finishes with features such as serialization and Single Table Inheritance.

Bringing the Database into the Picture:
The LAMP Stack

The Web is a place championed by open source development. Its very origins as a method to pub-
lish and cross-reference research materials stem from an open and cooperative spirit. Although many
industrial-strength development kits and practices exist for heavy industry, many developers who come
to the Web begin with the open source offerings and never need to leave them as their careers progress.

Open source web development and deployment almost always follow what is called the LAMP
model — a stack of tools including Linux, Apache, MySQL, and PHP/Perl/Python. In this chapter,
you will also refer to sites using Rails as being under the LAMP model even though it differs a bit from
what is traditionally thought of as LAMP. Figure 11-1 shows the software layer of this stack aligned
horizontally.

254

Chapter 11: How | Learned to Stop Worrying and Love the Schema

4 N\
Web
Server Application DB
Apache, Ruby / Rails, MySaL,
Lighttp, Python, PHP, Perl, PostgreSQL,
etc. efc. etc.
. J
Figure 11-1

As the popularity of a project grows, the idea of the LAMP stack is that each tier of the stack is able
to scale independently of the others as needs arise. The web server manages HTTP connections and
static files and blindly passes off all other requests to the application. The application decides how a
request should be answered, formulates the result, and fetches and stores all data related to the request
from the database. The database simply stores and provides data access. In theory, this allows for a
straightforward path for scaling up with the needs of your site; Figure 11-2 shows an arbitrary example
of this.

Web
Server

Application DB

Web
Server

Web

Server | | Application

™~
DB
e

Web
Server

— Application

Figure 11-2

Most of the discussion in this book is focused on the components that exist inside the Application box of
this stack, but no one component really steals the show from the others. Although you might spend 80
percent of your time in the application layer, each of the three components is completely dependent on
the others for your web application to be of use.

In LAMP-style web applications, the database usually serves as the keeper of all state, from permanent
user records to dynamic session data. Every request to the server is usually associated with a correspond-
ing set of queries to the database to retrieve the current context of the user’s interaction and then write
back the new information that has changed. Organizing all that information in a schema is, therefore, a
large and important task, even if the schema does not take nearly as much time to code as the application
that uses it.

255

Chapter 11: How | Learned to Stop Worrying and Love the Schema

Despite the critical importance of the schema, the open source tools available to assist you with schema
development are not as advanced and plentiful as the open source tools that the application layer of
the LAMP stack enjoys. For our application source code, we have sophisticated version control and
bug-tracking mechanisms to enable life-cycle management and group development. Yet many devel-
opers still keep schema definitions in large text files (called dumpfiles, because most databases have a
command that lets you dump the schema to a file on disk.) As a result, there is a serious challenge facing
web developers related to database scalability, but not the kind of scalability that results from heavy
loads. Instead, the problem is a project-management one: figuring out how to develop your database
schema across a team and evolve it over time.

Dumpfile-based schema development does not scale in a few important ways. It does not scale over the
lifetime of a project because it does not provide any notion of versioning or incremental development. It
does not scale across multiple developers because it does not provide an easy way to divide and coor-
dinate work. It does not scale across multiple environments because each database vendor and version
has specific peculiarities about how they handle data import (those linefeed characters, database specific
tricks, and omitted commas at the end of the lines will catch up to you!).

So although database optimization and usage strategies can (and will) be debated ad infinitum, one
certainty is that a lot can be done to optimize the development practices we use when working with
databases. Because Rails development is always done in conjunction with a database back end, and
because so much of the Rails philosophy is about improving code quality by improving the developer’s
experience, it is appropriate that Rails offers a solution to the database development scalability problem.

Thinking in Migrations

ActiveRecord provides a novel way to perform schema development called migrations. Whereas tradi-
tional database development centers around the database schema as a single large entity expressed as
a file containing a set of CREATE TABLE statements (among others), migration-based development treats
the schema as a living, evolving entity that begins as an empty database and evolves over the course
of the project to reflect new needs.

Developing in the style of migrations, your database schema is defined neither at one time nor in one
place. Instead, it is defined as a series of incremental improvements, each building on the last, the same
way that code slowly comes together on a project. Each of these incremental improvements is called a
migration. Each migration describes only the operations necessary to transform the schema from the
version before to the next level. This process is depicted in Figure 11-3.

engty Version 3

Version 1 Version 2

Figure 11-3

In practice, each migration usually contains a small, single unit of work. This unit of work might be
adding a table or altering the structure of one that came before it. The migration is checked into the
repository as a file by itself containing a Ruby class, so there is never any question as to why a piece of
the schema is the way it is: Every change to the schema can be documented from within the Ruby code
and traced back to the user who checked it in.

256

Chapter 11: How | Learned to Stop Worrying and Love the Schema

In developing a schema like this, the set of migration definitions themselves become a form of chrono-
logical documentation for your schema. Each migration tells a small bit of its overall story:

001_create_users.rb
002_create_profiles.rb
003_add_profile_link_to_users.rb

Contrast looking at the set of files above to a structural dumpfile in the format used on many develop-
ment projects. A newcomer looking at a migration-based schema doesn’t only immediately understand
what the major components of your schema are; he or she also can follow along with the evolution of
your project’s requirements and your thinking as a schema developer. If that newcomer wants to make
a change, doing so is as simple as adding a new migration at the end that defines those actions that con-
stitute the desired change, cleanly separating them from the rest of the schema definition for testing,
tracking, and documentation purposes.

The versioning aspect of migrations is also a novel one. Traditional dumpfile-based development may use
schema definitions that are checked into a versioned repository, but the dumpfile itself is an all-or-nothing
definition, providing no notion of versioning from the standpoint of the database schema. In other words,
the only way to, say, roll back your schema to three versions prior is to wipe the database clean and then
load the dumpfile from three versions back. Because each migration must declare both how to imple-
ment its changes and how to remove its changes, developers using migrations are able to roll forward
and backward between versions as incremental changes to a living schema. This capability creates a con-
venient environment for testing schema changes as they are being developed, permitting developers to
back up and redo a recent change if needed.

Finally, migrations do for schema development what languages such as Ruby, PHP, and Python do for
HTML development: They embed the task of performing schema definitions within the context of a
scripting language, thereby enabling all the niceties that come with that language to be mixed into the
schema definition. Your schema definition no longer has to be static declarative script, but instead is an
active program whose ultimate result is to change the schema of your database. This means that loops,
conditions, and even web service calls are all valid from within the schema definition — an enormous
difference from what you have available in a . soL file. Sticking to the Ruby-based API for database
operations, your definitions are also protected against the peculiarities of one database over another; you
can develop for Oracle, MySQL, PostgreSQL, and any other database with an ActiveRecord adapter with
the same unified set of migrations.

Migration development is a powerful new way to approach your database schema, and the first half of
this chapter will discuss how it works, how to write a migration, and how to manage migrations when
developing on a team. The API documentation available for free online is excellent, so I don’t need to
rehash it here. Instead, this chapter will provide a bit of discussion about each of those migration topics
to enhance the API-centric documentation already available.

Writing Migrations

A single migration is described by a regular Ruby class that extends the ActiveRecord: :Migration class
and overrides two special methods, self.up and self.down. The former represents the change that the
migration contributes to the schema, and the latter represents the steps necessary to undo that change.
No other requirements are placed on the size or complexity of the Migration class as long as these two
methods are defined, leaving developers with the full pallet of Ruby’s flexibility to accomplish these
two tasks.

257

Chapter 11: How | Learned to Stop Worrying and Love the Schema

The following code shows an example of a simple migration. This migration, called createLanguages,
creates a table intended to store ISO 639-3 language information for use in a multilingual application.
The self.up step creates a simple table with four fields and adds an index to the field containing the ISO
369-3 code. The self.down step simply removes the table.

class CreateLanguages < ActiveRecord::Migration

def self.up
create_table :languages { |table]|
'code' is the three-letter ISO 639-3 Code
table.string :english_name, :native_spelling, :code
}
add_index (:languages, :code)
end

def self.down
drop_table :languages
end

end

You can find the entire migration API available online on the Rails API documentation site, but migra-
tions need not be just Ruby-ized SQL; some of the framework’s true power becomes apparent when
migrations rely on external libraries or data to influence schema definition and alter the state of the
current schema and data within. These types of migrations could do anything from encrypting a field
previously in plain-text to performing heavy computations on the data within your database to baseline
a new reporting system that you are about to add.

Imagine that you are writing a migration that comes packaged with a plug-in to an existing web appli-
cation. That application connects foreign language learning partners from different languages, and your
plug-in enables the site to be translated into each of the possible languages a user can register with. You
know that the existing language learning application has an API with a method call that returns a list of
languages that the administrator has enabled:

GET /api/supported_languages

eng

fra

spa

ita

cmn

jpn

ara

hin
You can write your plug-in migration to take advantage of this API to enable only those languages that
the site already supports for your plug-in. Your first migration installs the table that contains possible

translation languages and loads seed data into that table.

Your next migration is where you can see the additional power of Ruby. It uses this API to activate only
those languages that the site’s API returns as valid, using an HTTP GET to the API as the filter:

258

Chapter 11: How | Learned to Stop Worrying and Love the Schema

class FilterLanguages < ActiveRecord::Migration

def self.up
add_column :languages, :active, :boolean, :default => 0

Enable by default whichever languages are returned by the API

open("http://your_company.com/api/supported_langugages") do | languages |
languages.each line.collect! { |language| " iso_639_3 = '#{language}' " }
end

or_statement = languages.join ' OR '

Language.find(:all, :conditions => or_statement) .each ({
| language |
language.active = true
language.save

end

def self.down
remove_column :languages, :active
end
end

The preceding self.up step first adds a new column named active to the languages table and sets the
default value to false. The value of this column will represent whether the language should be surfaced
to the user as a potential language for viewing the site. The migration then makes the API call by reading
the data at http://your_company.com/api/supported_languages and parses this document to extract
a list of ISO 639-3 names, combining them into a WHERE clause for the database operation.

Although this bit of code may seem excessive for the simple example shown here, the power of migra-
tions is clear. In addition to organizing your schema definition into logical, documentable, versioned
steps, they provide powerful building blocks into which any legal Ruby code may be inserted. A migra-
tion might use the RAILS_ENV variable to make a run-time decision about which set of seed data to
load — development, test, or production — for example. Or it may introspect into the machine’s hard-
ware characteristics to decide how many columns on a table to index.

Performing Schema Migrations

After migrations have been created to define various stages of your database schema, developers can
easily move back and forth between schema versions with the db:migrate rake task that comes with
Rails. Running rake db:migrate causes ActiveRecord to perform all migrations necessary to bring the
existing database schema up to the latest defined version. The migrate task can be run alone to bring
a database up to speed with the most current definition, or an optional VERSION = x argument can be
provided to specify a particular version of the schema to which to migrate.

ActiveRecord keeps a small table named schema_info that stores a single row stating which version the

current schema represents. This table provides the basis for ActiveRecord to decide which migrations it
should perform during the do:migrate task and whether it should perform the migration forward (with

259

Chapter 11: How | Learned to Stop Worrying and Love the Schema

self.up) or backward (with self.down). If the table does not exist or if it states that the current version
is zero, then ActiveRecord starts from the first migration, executing them successively until the desired
version is reached. If you have already run migrations in the past, ActiveRecord compares the current
schema version in the schema_info table against the desired version number and rolls you either forward
or backward appropriately.

Team Schema Development

Migrations make it possible for schema development to be a shared responsibility across a team, but
they do not make it effortless. In many ways, using migrations on a team creates strange perversions of
version control. Migrations offer schema versioning, but it is very difficult to make multiple versions
of the migration files themselves without causing a lot of group confusion. Nevertheless, if a process is
followed, it is an entirely possible feat. Here are four rules to help your team use migrations to develop
your schema as a team effort.

1. Pass around a virtual baton that enables only one developer at a time to create models
and migrations. The existing migrations system in Rails is based on a strict ordering of the
migration files embedded within their filenames:

Macintosh-3:migrate ted$ ls
001_create_users.rb
002_create_apps.rb
003_create_memberships.rb
004_create_locations.rb
005_create_addresses.rb

The generate script for creating a new model object and the one for creating a new migra-
tion both automatically create a new migration file with the next number available. Problems
occur when two developers each independently create a new model, cause the file to be gen-
erated, and then check this in; all of a sudden, the ordering is broken:

004_create_rabbits.rb
004_create_giant_metal_objects.rb

Rails development teams choose a number of different strategies to cope with this prob-
lem. Some designate a single developer with the responsibility for developing the schema,
and all database-related requests must go through that developer. Other teams just require
that all developers synchronize with the repository before committing (which all develop-
ers should do anyway), but this does not account well for the number of conflicting changes
that may be taking place in parallel in a large team environment. Still other tools have been
created that provide alternatives to Rails migrations that ease the pain of team development.

A good strategy that combines these alternatives can be reached by creating a “‘model
baton’” that can be passed from developer to developer. If you all work in the same location,
laminate a funny picture and stick a magnet on the back of it to post it on doors or cubicles.
If you collaborate over the Internet, keep some list on a Wiki for sign-ups and baton passing.
Only the developer with the baton is allowed to run the script/generate command to cre-
ate models and migrations.

Why so strict? Why not use the baton to just limit who gets to commit new models and
migrations? Because it is always easier to set the rule strictly and let the real world break it
as needed. Sometimes a change to the database schema dramatically alters how components

260

Chapter 11: How | Learned to Stop Worrying and Love the Schema

will fit together. If multiple people are working on changes in parallel, some of these changes
might depend on design features that will get overhauled by others. So, only one person at a
time is allowed to even create new models and migrations. Of course, that’s just the rule — if
you want to break it, then find the person who currently has the baton, describe the changes
you want to make in parallel, and ask her whether that change will be okay. This method
preserves mutual ownership over the model while still placing a controlled process to mini-
mize the risk of parallel changes crashing into each other.

2. Never “hold your place” by checking in an empty migration. The db/migrate directory
that contains migration definitions operates as a queue of sorts, but unfortunately, you do
not have control over how and when it is accessed. If you check an empty migration into
your source repository just to reserve yourself a spot, you run the risk of other develop-
ers updating to receive your empty migration and running the migrate script to roll their
database schema version forward. Migrating forward over an empty migration will make
ActiveRecord believe that it has already performed that migration, even if its contents were
empty. When you check in the real contents of the migration later, ActiveRecord will not
see that anything has changed, thus preventing team members from getting the real schema
changes you meant to record. To get these changes, they would first have to migrate back-
wards past your migration before migrating forwards again to pick up the new version in
their schemas. Even then, problems arise, as migrating backwards over the new version will
likely attempt to drop tables that were never created in the old version, causing exceptions to
be thrown. Basically, it can be a real mess. So when you check in a migration, remember: You
never know who is going to update and migrate to it, so it is best to treat your first check in
as your last. This leads to the next, similar point:

3. Avoid changing a migration after it has been checked in. As a more general rule of thumb
than the last, you should avoid changes to an existing migration entirely when in a team
environment. This is a lot to ask of modern software development (good coding thrives on
refactoring and change), but migrations represent a different type of versioning system than
source repositories such as SVN. Whereas source repositories represent change over time by
overwriting files (while retaining a history of edits), migrations represent change over time
by adding new files.

You can accomplish all the types of incremental changes that you are accustomed
to — addition, replacement, and deletion — by tacking another migration on at the end of
the current lineup. Adding a new design element by changing an existing migration sneaks
it in such that developers will need to drop their database and start from scratch to bene-
fit from the change. Adding that change as a new migration tacked on the end incrementally
allows everyone to receive the change easily.

From time to time, you may want to declare a database cleanup day when you will consol-
idate migrations and clean things up a bit with the knowledge of retrospect. Just make sure
everyone is aware that these changes are going to take place and that they have the chance
to prepare their local development systems to re-bootstrap their databases when the cleanup
is done.

4. Develop and verify the tests for your migration before you check it in. Because other
developers on your team may use your migration as soon as you check it in, it is important
to develop and run tests to verify the correctness of your changes before you check in the
migration. This is a good idea anyway, but because checking in a migration in a team envi-
ronment is such a sensitive operation, it is even more important here.

Although team migration development is not always easy, it is still easier than the process without
migrations. By creating a strict set of rules for you and your team to follow, you can control migration
development and model addition enough to minimize the major risk areas, and you can count on the

261

Chapter 11: How | Learned to Stop Worrying and Love the Schema

migration timeline to provide you with an easy, incremental way to build up your schema. As a final
note, you might not decide to make schema development a team activity, and that is a fine decision. Many
teams feel that developing a schema is a quiet and rigorous process that one or two developers who have
intimate knowledge of the entire schema should do. If your team dynamic or schema complexity requires
it, just deputize that all change requests go through that one developer.

Seeding Data for Production

In many types of projects, it is valuable to seed data at several stages of the design and development
process. Rails provides facilities called fixtures for creating datasets for use during testing, but that is
where its built-in support for seeding ends.

Seeding is generally used to bootstrap your web application with some initial set of data. What changes
from project to project, however, is the size and nature of that data. In some circumstances, it is very
small — for example, adding the default user to a blog application. In other cases, it may be hundreds,
thousands, or millions of records large, such as a dataset of localization settings (hundreds) or a series of
financial datasets (millions). Each of these situations will place different demands on the way that you
store and load this data into the database.

This section of the chapter covers three different ways to seed data into a Rails application. Each way
comes with a different method of packaging the data, and each works best with a different size dataset.

Small Datasets: Seed Migrations

The simplest and most direct way to seed data into your database is to do it directly from within a
migration. Remember that a migration is a regular piece of Ruby code acting from within the Rails envi-
ronment, so you are at liberty to write or call any code that you want within the self.up and self.down
steps. You can even add data to a table being created in that migration, but remember to add the data
after the create_table statement!

Seeding data from within a migration makes sense when the data is intimately coupled with the schema
that underlies it — that is, the table must be populated in order for the application to work. By including
the data as part of the migration, there is no way to get one without the other. In this sense, it also sim-
plifies the setup if you are sharing code with others. That is why you will see this strategy used by some
third-party plug-ins to Rails: By including both the schema and data in the same step, the user has one
less set of issues to worry about while setting up the plug-in.

Placing data directly within the migration is also a good idea only if the amount of data you are adding
is small to medium in size. Here, medium means that the data is at the border of what you would expect
to come in some sort of structured file, such as an XML or CSV file. After your data reaches the size in
which it is better deployed and maintained as a pure data file, your developers and users will thank you
for separating it out as such.

There are really two ways to seed data from within migrations. The first is to create a migration whose
only purpose is to load data. Data within relational databases is intricately interrelated when foreign
key relationships abound. Sometimes your schema is incrementally built up across several different
migrations, but the data you want to seed requires the summation of the migrations before it, rather
than a particular one. Rather than build up a complicated web of seed data incrementally as the schema
becomes available, it makes sense to wait until the schema is ready and then create a migration to add it
all at one time.

262

Chapter 11: How | Learned to Stop Worrying and Love the Schema

The second way is to include the seed data for a table inside the migration that creates that table. Follow-
ing this strategy ensures that the user knows where to look to find the seed data for that particular table,
and it works well for small data seeds that are limited to a single table in the database.

class CreateTags < ActiveRecord::Migration
InitialTags = ["ruby", "rails", "the interwebs", "hiking"]

def self.up
create_table :tags do |t]
t.string :name
t.timestamps
end

InitialTags.each do |tag]|
Tags.create(:name => tag)
end
end

def self.down
drop_table :tags
end
end

Medium Datasets: Seed Fixtures

Embedding data into migrations is an easy and direct route to seeding data, but it leaves much to be
desired if the size of your data is more than a handful. Just as maintaining a text file embedded inside
the confines of a Java class is a suboptimal solution, maintaining data embedded within a series of Ruby
classes loses its attractiveness after the data reaches a certain size or a certain coverage breadth across the
tables in your database. Separating them into “seed fixtures” allows the data to be split off as a separate
concern, maintained and edited as just plain data files, and deployed separately from the schema itself.

Although the fixtures component of ActiveRecord is intended for testing and has no parallel for pro-
duction data, the important segments of code can be easily extracted from the ActiveRecord library and
pulled out for reuse in a separate fixture location intended for seeding your production system.

Here is a task that you can place inside your 1ib/tasks folder (name it something like seed.rake)
that enables you to create production fixtures in the same manner as the testing ones that you
already have:

Creates a task to support seed fixtures for your production system.
- Store this file in lib/tasks/seed_fixtures.rake

- Place fixtures in db/seed.

- Use with 'rake db:seed’

namespace :db do
desc "Loads seed fixtures into your database."
task :seed => :environment do
require 'active_record/fixtures'
seed_dir_rel = File.join('db', 'seed')
seed_dir_abs = File.join(RAILS_ROOT, seed_dir_rel)

263

Chapter 11: How | Learned to Stop Worrying and Love the Schema

Supported formats are YAML and CSV

Dir.glob(File.join(seed_dir_abs, '*.{yml,csv}')).each do |file|
Fixtures.create_fixtures(seed_dir_rel, File.basename(file, '.*'))
end
end

end

This task expects production fixtures to live in a new directory that you must create called db/seed. As
with test fixtures, you can create either YAML or CSV files with the same filename as the table they are
supposed to seed. This task will examine all the files in the db/seed folder and attempt to load each one
into the database. To use this task, run rake db:seed from your rails root directory.

Large Datasets: Dumpfiles

The fixtures code that comes with Ruby on Rails simply isn’t made to deal with large data sets. Even
using a library such as Fastercsv, imports will slow your machine to a halt and take sometimes an hour
when importing data sets that are many megabytes in size. For these situations, there is really no other
solution than to use your particular database’s native import mechanism, but that doesn’t necessarily
mean that you can’t automate the process in a Rails-like fashion. Following is a MySQL-specific task
that will take CSV files in the db/seed directory you created for medium-sized seeding, convert them
into a temporary representation for import into MySQL, and then perform a data import using MySQL’s
import functionality. For very large data sets, the following code will achieve large speed increases over
the fixture method shown previously, or even over custom code using Fastercsv. The code required to
do this is fairly sizable, so it will be broken up into chunks for explanation. The full version is available
from this book’s companion web site at www.wrox.com or from www.artofrails.com.

First, declare the db:mysqgl_import task and initialize a few variables that represent your seed directory
and the current Rails environment.

namespace :db do
desc "Loads CSV files into your database using MySQL import."
task :mysgl_import => :environment do

Set up paths and environment variables
seed_dir = File.join(RAILS_ROOT, 'db', 'seed')
env = ENV['RAILS_ENV'] || 'development'

puts " * Using #{env} environment"

Next, use the environment variable to load the database configuration out of the database.yml file so
that you can read in the username and password for use with the MySQL command you will use later in
the task.

Get a your database configuration
dconfig file = File.join(RAILS_ROOT, 'config', 'database.yml')
dconfig = YAML::load(IO.read(dconfig_file))

unless dconfiglenv]['adapter'] == 'mysqgl'
raise StandardError.new (
"The db:mysgl_import only works with a MySQL database")
end

264

Chapter 11: How | Learned to Stop Worrying and Love the Schema

database = dconfiglenv]['database']
user = dconfigl[env]['username']
password = dconfigl[env] ['password']

Next, you prepare the options string for the MySQL command by specifying the user and the password.
Note that it is not generally considered good security practice to execute a command-line statement that
includes a password, as you are doing here.

Prepare the options string for the MySQL command

This is not ideal because it uses your password on the command line
options = " -u #{user} "

options = options + " --password=#{password}" unless password.blank?

Now you address each CSV file in the seed directory, opening the file and reading in its header row into
an array.

Load each CSV file directly into MySQL
Dir.glob(File.join(seed_dir, '*.csv')).each do |file]|
next unless File.file? file

table = File.basename (file, '.*')
puts " * Importing into #{table}"

Get the header row

fixture = File.open(file, "r")
header_row = fixture.gets.chomp!
fixture.close()

You use the header row to build the SQL command that will be used for the MySQL import. The partic-
ular SQL built up in this step may vary depending on your database and machine configuration.

Set up Database
cmd_str = ""

Optionally add the below line to clear the table first
cmd_str = cmt_str + "DELETE FROM #{database}.#{table}; "

These lines import the CSV file into your table
cmd_str = cmd_str +

"LOAD DATA LOCAL INFILE '#{file}' INTO TABLE #{database}.#{table} "
cmd_str = cmd_str + "FIELDS OPTIONALLY ENCLOSED BY ‘\"' TERMINATED BY ', ' "
cmd_str = cmd_str + "IGNORE 1 LINES (#{header_row});"

Finally, you write the MySQL command to a temporary file:

Load commands into a temporary file
temp_file_name = File.join(seed_dir, "#{table}_import_commands.sqgl")
File.unlink temp_file_name if File.file? temp_file_name

temp_file = File.new(temp_file_name, "w+")

temp_file << cmd_str
temp_file.close()

265

Chapter 11: How | Learned to Stop Worrying and Love the Schema

And you run the MySQL command, passing it a reference to the temporary file with your SQL:

Run the MySQL command

mysgl_cmd = "mysql #{options} < #{temp_file_name}\n"
system(mysgl_cmd)

File.unlink temp_file_name

end # End Dir.glob loop
end # End task definition
end # End namespace enclosure

In addition to the piece of code that you can reuse from this section (online from this book’s companion
web site at www.wrox.com or from www.artofrails.com), the lesson to take from this section is that it is
always worth the effort to improve the Rails framework to meet your needs rather than simply work with
what it provides you. By adding custom rake tasks to accomplish data automation, you relieve yourself
from worrying about that aspect of the project and from having to manually load data every time you
run another deployment of your project.

When a Database Isn’t Enough

It is generally a good idea to trust relational database design first, and then veer away from it only when
you have a clear reason. After all, an entire industry is built around creating and optimizing the way
databases work. But sometimes relational databases just do not provide the abstractions that you need to
store your data. Here are three situations in which you can take advantage of some of the alternate access
Rails provides to the database for special situations.

Model Object Hierarchies

A question sometimes used in programming interviews is, ““Can you write object-oriented code in Per]?”
The right answer is, “’Sure, but it might take a bit more code than usual.” With the prevalence of OO-style
libraries for JavaScript, the trick behind this question is a lot clearer today than it sometimes was in the
past: object-oriented programming is a style of coding, not a language feature. It just so happens that
some languages make it a lot easier to write OO code than others by building in keywords to support,
and even require, it.

In most applications, developers encounter model objects that get decomposed into several subtypes. An
example familiar to many might be the decomposition of different account types on a professional blog.
Logged-in users might have the ability to comment on and rate articles. Advertisers are special users
that have access to account management features. Bloggers are able to post new articles to the blog, and
Administrators are special users who can modify the blog’s settings. This object model is depicted in
Figure 11-4.

(Advertiser) (Blogger)

Figure 11-4

266

Chapter 11: How | Learned to Stop Worrying and Love the Schema

As with Perl, relational databases used by the web development community do not provide a native
way to represent such an object decomposition in the table layout. A typical solution to modeling this
hierarchy is to add a type field to the user object that stores the user’s type or role (other solutions may
involve an action-based permissions table). This collapses the notion of object hierarchy down into a
single tag on the User object that is then used as a permissions check in many of the methods on that
object and others.

def purchase_advertisement (post)

raise StandardError.new("Woah there, buddy") unless @Quser.type == :advertiser
.. Method continues
end

Ideally, you would like to build object orientation on top of the database, even if it does not support it
natively, so that you can implement the different types of users as different objects in a hierarchy with
different fields and methods. ActiveRecord provides a way to do this through a feature called Single
Table Inheritance. Single Table Inheritance (STI) allows you to develop a set of ActiveRecord objects
that fall into a hierarchy and to have ActiveRecord automatically collapse them into a single table in the
database for you. That way, both worlds see the data as they want: your database gets the Users table
it wants with a type field on it, and you, the developer, get the benefit of working with subclasses and
inheritance.

class AddTypeToUsers < ActiveRecord::Migration
def self.up
add_column :users, :type, :string
end

def self.down
remove_column :users, :type
end
end

If the type field is already being used by your table or your particular database chokes on type as a
column name, let Rails know where to look for the type field with the set_inheritance_column macro
in your model class:

set_inheritance_column "user_type"

After an acceptable field is in place to store the object type information, simply begin to subclass the
top-level object that shares the same name as the table.

class Advertiser < User
end

class Blogger < User
end

class Administrator < Blogger
end

Boot up the console and try creating a few different types of User, Advertiser, Blogger, and
Administrator objects. Then try querying with the :all parameter from each of the classes. You will

267

Chapter 11: How | Learned to Stop Worrying and Love the Schema

notice that each :all query returns all the objects of that type and all subtypes. So the User class returns
instances from all four, the Blogger class returns instances of Blogger and Administrator, and the
Blogger and Administrator classes each return only objects whose type field references either Blogger
or Administrator — exactly what we would hope from a object system with a proper class hierarchy.
In the array returned, each object is typed appropriately. So the query User.find(:all) will return an
array containing objects of four different types.

>> User.find(:all).each { |object| p object.class.to_s }
"Blogger"

"Administrator"

"Blogger"

"Advertiser"

"User"

"Advertiser"

Now that you have your hierarchy set up, how will you use it apart from the convenience of having the
class names differ? In general, you have two different ways to differentiate your STI model objects, as
discussed in the following two sections.

Differing Fields from Subclass to Subclass

In most object hierarchies, child classes end up defining their own variables. Model objects using Single
Table Inheritance can, too, but all objects that descend from the top model object share the same table in
the database. This means that, despite some variables being relevant to only certain child classes, in truth
no mechanism exists that ties a particular column to a particular subclass (although with clever use of
method overloading and validations, you can explicitly define a virtual block on variables not meant for
a particular subclass). Figure 11-5 shows what a hierarchy of ActiveRecord objects using the same table
might look like.

User
first_name
last_name

Advertiser ‘ Blogger ’
company_name '
company_url tagline

A
Admin
recruited_by

type first_name last_name company_name company_url tagline recruite_by

1 Admin Ted Benson nil nil -EB This is me.

2 Blogger Grace Deng nil nil .gd nil

3 User Alex Benson nil nil nil nil
Figure 11-5

If you are using Single Table Inheritance in Rails and you want to maintain object-specific fields within
an STI hierarchy, be prepared to start seeing a lot of nil values in your data. The problem, as you can
see in Figure 11-5, is that each object necessarily contains a field for every possible property in the hier-
archy, even if it is not relevant to the particular object specified in the type column. As the number
of subclass-specific fields increases, imagine how the storage efficiency of each row will decrease. It is
imagined for you in Figure 11-6.

268

Chapter 11: How | Learned to Stop Worrying and Love the Schema

1|Admin| Ted [Benson -EB_|This is me| z

2 |Blogger| Grace | Deng .gd pop oo
3| User [Alex [Benson Fido z
Figure 11-6

For a modest number of columns, this is not a big deal in real-world terms, but relational database stick-
lers will quickly raise an eyebrow at your tables when they start to see nil values all over each row.
Normally, a table with sparse rows indicates a poor schema design, but, of course, the entire concept
of Single Table Inheritance somewhat exceeds the boundaries of normal relational database use. So to a
limited degree, be comfortable with sparse rows, but also be on the lookout for when unused fields begin
to overtake the used ones. Just when the nil-field situation created by STI has gone too far, it is entirely
application and schema specific, so the best advice is to keep it in the back of your mind to check up on
the issue from time to time and evaluate for yourself whether you are better off refactoring a bit.

Differing Helper Methods from Subclass to Subclass

The biggest win from Single Table Inheritance comes from the ability to differ the implementation of
helper methods on your model objects. Ruby on Rails is model heavy. If you look closely at the code
of a Rails application, you will find that much of the real action takes place within the model classes,
while the controllers just coordinate high-level flow and the views are just display templates. Because
so much of your Rails code exists in the model, STI provides a great way to organize and reduce its
footprint. It also provides some nice security protections; Regular users can be loaded into completely
different model objects from administrative users, for example, complete with a different set of methods.

Refining Method Implementations

The first way STI helps you organize your code is by allowing you to refine the implementation of each
method so that it is specific for a particular user type. Say, for instance, that users of a blogging system
get a particular Karma level that affects how visible their blog postings are on the main page. Being
the unfair world that it is, your minimum Karma level differs depending on what type of user you are:
bloggers have a minimum of five points, and administrators have a minimum of 10 points. Without STI,
you would be forced to implement some logic in the karma getter method that inspected the value of
the object’s type field, but this is not a good way to code because it makes the method implementation a
hidden dependency on your schema that must be changed if the number of user types is increased.

Assume that you created a migration to add the karma field to the User object and set all existing users’
karma to zero. By default, each user object now has a karma accessor on it, thanks to ActiveRecord’s
dynamic introspection of the model that backs it. To further differentiate the minimum karma rules you
have set for objects of the Administrator and Blogger classes, you can simply overload the karma acces-
sor to return the maximum either of users’ earned karma value or their guaranteed karmic minimum.
The implementation that follows requires administrators to work just as hard to earn points as anyone
else, but it guarantees that they’re spotted a certain minimum until they are able to surpass it.

class Administrator < Blogger
def karma
[10, self[:karmal].max

end

end

269

Chapter 11: How | Learned to Stop Worrying and Love the Schema

class Blogger < Users

def karma
[5, self[:karma]].max
end

end

Now from the Rails console, you iterate over all user records and print their type and their karma value.
Remember that in the migration not shown here, you initialized all existing users to a karma level of zero.

>> User.find(:all).each { |u| p "#{u.class} -- #{u.karma}" }
"Blogger -- 5"

"Administrator -- 10"

"Blogger -- 5"

"Advertiser -- 0"

"User -- 0"

"Advertiser -- 0"

The output of this command shows the object hierarchy enabling you to alter the way that different types
of users report a value.

Subclass-Specific Methods

The second way that STT allows you to organize your helper methods is by adding completely new meth-
ods specific to a certain subclass. Administrator object might be able to approve the addition of a new
blog post, for example, whereas no other user should have that capability. Here is a shoddy implementa-
tion of what one such method might look like:

class Administrator < Blogger
def approve (post)
if (post.class == Post)
post.valid = true
post.approved_by (self)
post.save
end
end
end

The important feature to note is that by adding the approve (post) method to the Administrator class,
you can reach this bit of functionality only if you have the Administrator value in your table’s type col-
umn. It acts not just as a way to organize type-specific methods but also as a crude first-pass authorization
mechanism for your application.

Single Table Inheritance bootstraps on top of the database to allow for class hierarchies of objects to be
conveniently serialized down to the parent’s class” database table. Although this capability comes at the
potential expense of a sparse table, it brings great benefits from the standpoint of model development
and code organization. When you have a development situation in which a hierarchy of objects is at
play, you should consider STI as a way to organize your code.

270

Chapter 11: How | Learned to Stop Worrying and Love the Schema

Storing Lists, Hashes, and Other Fun Things

There are times when you want to store some object in a database only as a property to be read off of
another object. When this object is a simple data type, it can go in the schema exactly as such, but when
it is a list of items or a hash table, an entirely new table must be created to support it. Suppose you
are really just interested in recall — not searching or data sharing — and you do not want to put your
database through the task of having to scan over a table of list items to find those associated with some
foreign key. Rails provides an easy way to seamlessly serialize and deserialize simple objects into YAML
for you behind the scenes.

You can accomplish this behind-the-scenes serialization with the serialize macro that ActiveRecord
provides. Use it in your model object, just as you would an association:

serialize :favorite_colors

You can, and should, also associate an object type with your serialized field. Doing so will allow users
of your model to know what to expect out of that field and will also serve as a defense against errors
by hard-typing the field. To put a type on the serialized field, just include the class object as the second
argument:

serialize :favorite_colors, Hash

Assume that you want to add a “profile”” in your user table that records the user’s preferences about
various aspects of the site:

class AddUserProfiles < ActiveRecord::Migration
def self.up
add_column :user, :preferences, :text
end

def self.down
remove_column :user, :preferences
end
end

Next, amend the User model object to note that you want the preferences column serialized:

class User < ActiveRecord: :Base
serialize :preferences, Hash
end

And now, booting up script/console, you load an existing User object and try setting and saving the
preferences field on it. The following code passes it a regular Ruby hash containing a series of symbols
and another embedded hash.

>> u.preferences = { :favorite_color => :blue,
?> :favorite_steak => :tuna,
?> remail => {

271

Chapter 11: How | Learned to Stop Worrying and Love the Schema

2> :spam_occasionally => true,
?> :spam_alot => false

>> }

>> }

=> {:favorite_steak=>:tuna, :favorite_color=>:blue, :email=>{:spam_alot=>false,
:spam_occasionally=>true}}

>> u.save

=> true

After saving the User object, inspect the value of the saved field as the database sees it to find the YAML
representation of the hash you provided in the Rails console.

mysqgl> select preferences from users where id=1;

:favorite_color: :blue
:favorite_steak: :tuna
cemail:
:spam_alot: false
:spam_occasionally: true

1 row in set (0.00 sec)

Automatically serializing arrays and hashes can have many uses in Rails, from optimizing the lookup of
certain pieces of information to storing simple Ruby objects to incorporate in the business logic of your
web application as preference settings.

Custom Getters and Setters

ActiveRecord automatically provides getter and setter functionality for all database fields on

your ActiveRecord objects by inspecting the database, but you can always override these if you need
to. A variety of reasons for doing this exist, such as providing custom object serialization, wrapping
additional logic around a particular field (such as password encryption), or preventing a database write
in some circumstances.

Many applications that allow their users to add text data in a format such as MarkDown or Textile use
setter overriding to optimize subsequent reads. They maintain two fields: the author-facing version
for creation and editing and the HTML version for display. When the author-facing version is set, an
overridden setter automatically translates the text into HTML at write-time. That way, in a typical trade
between disk space and execution time, the translation does not have to be done every time someone
wants to view the content:

class Article < ActiveRecord::Base
Assume two fields: body and body_html

def body=(text)

self[:body] = text

self[:body_html] = translate_to_html (text)
end

end

272

Chapter 11: How | Learned to Stop Worrying and Love the Schema

When objects of the Article class are used for editing by their author, the body field is accessed to fetch
the MarkDown or Textile version of the contents. When the object is used for display to a reader, the
body_html field is used.

Summary

This chapter showed you some tips and tricks that help streamline database development the same
way that you streamline your application code. It covered the basic concept of migrations with a few
simple examples and discussed the issue of how to practice team schema development without running
into migration collisions. Next, the chapter looked at the issue of data seeding — loading a baseline

of data into your database for production use — and described three different ways to package and
load seed data. Each way catered to a different size of dataset. Finally, this chapter showed some ways
of crafting model objects that use the database above and beyond the abstractions that it provides by
default, including Single Table Inheritance, object serialization, and method overrides.

The next chapter takes a look at a topic of critical importance to the long-term viability of a Rails appli-
cation: testing. Rather than cover the existing unit test framework included with Rails, you'll explore the
new discipline of behavior-driven development (BDD) and specification-based tests. The fundamental
ideas behind BDD are introduced, as well as a BDD implementation for Ruby called RSpec.

273

|

Behavior-Driven
Development and RSpec

“That’s crazy enough that it just might work,”” one of the technicians said, leaning back in his chair.

They had gathered everyone in the main room of the INOC to go over the plan. Back in front of the larger
audience, General Operand had returned to his public persona.

““Of course it will work!”” he barked. “Matz says it’s flawless.” He slapped Matz hard on the back,
sending him stumbling a few steps forward.

“Not quite flawless,” Matz said as he looked up at the General.
““What do you mean ‘not flawless’? You said you were sure!”

"“Well, for one thing,” Matz explained, ““we can’t be sure what object types they are programmed to
expect unless we can get a copy of their spec documents, which isn’t possible in so little time. So we’ll
have to pick something as unexpected as possible. Something totally random.”

In a fitting retaliation, Matz had devised a plan to use the compilers’ very inability to dynamically modify
code against them. It wouldn’t kill the compilers, but it would stun them until revived, which also fit the
resistance objectives; compilers were just pawns in this game. As far as General Operand was concerned,
the compilers were to be “fought with the care with which you’d fight a brother!”

The plan hinged on the hard-typing of their APIs. They had strict orders, a strict API, and strict callbacks.
If the other side was going to fight dirty and take advantage of language features, so would the resistance.
They could throw any object they wanted straight into the unsuspecting API and the compilers would
crash if it were an object type other than expected.

“Excellent!”” the General roared. ““We'll just pick something they’d never expect. Bryant! What was that
contraption you had in here yesterday?”

“Umm,” he was startled again by the General’s question. “You mean my humidifier, sir?”

“Exactly — the thing-a-ma-what’s-it! We’ll use one of those!”

Chapter 12: Behavior-Driven Development and RSpec

“There’s one more thing, General,”” Matz added reluctantly. ““We're going to have to be close.”
“How close?”

“Very close. It's going to have to be a callback. . .”” He hesitated. ““Which means we’re going to have to
send some agents in there to get captured first.”

To see the plan put into action and learn W. Web's fate, visit the book’s companion web site at Www . Wrox . COm.

Test-driven development (TDD) is an important skill to learn as a developer and one that is especially
prized by the Rails community. To the uninitiated, developing through tests seems like extra work at the
least and an oppressive corporate-style burden at the most. But as those who follow this practice will tell
you, the rewards of TDD far outweigh the work as the size and duration of a project progresses.

TDD is a style of development driven by the premise that you shouldn’t write tests just to check the code
you write; you should write tests to define the expectations and drive the development of new code. ““Test
First, Code Second,” is a good distillation of the basic message. By writing your tests up front, you are
forced into a mentality in which you design code with clean, small divisions of functionality, eschewing
long, cryptic methods. If all goes well, the resulting code is not only easy to read and talk about but also
defensible because the tests that validate it were developed even before the code itself was.

“If only large-scale projects actually worked that way”’ is the refrain you might hear from experienced
developers when reading the last two paragraphs. Although TDD can be amazingly effective, in truth
it is a difficult development style to truly achieve. It is hard to decide up front what to write your tests
for, and even after you have decided, you don’t always know how fine a grain of capability to test. That
is where this chapter hopes to step in with a new style of development that reorients the test-driven
mindset toward stories, requirements, and behaviors.

This chapter is about behavior-driven development (BDD), an evolution of the TDD style that overlays
an easy-to-understand vocabulary and set of development practices on top of existing expert advice
about test-driven practices. These contribute to an overarching developmental story that helps devel-
opers define the desired characteristics of an application and identify where and how to test those
characteristics.

BDD is rapidly gaining ground in the Rails community as a way to define requirements and expecta-
tions, guide development, provide reference examples, and test code all in one package. This chapter
will introduce you to BDD and show you how to develop with RSpec, a BDD testing library for Ruby
applications.

Behavior-Driven Development

BDD is not a new technology per se, but is rather a way to think about and structure your testing and
development to maximize your effectiveness as a developer. In the words of Behaviour-driven.org
(http://behaviour-driven.org):

It must be stressed that BDD is a rephrasing of existing good practice, it is
not a radically new departure. Its aim is to bring together existing, well-
established techniques under a common banner and with a consistent and
unambiguous terminology. BDD is very much focused on “Getting the
words right”” and this focus is intended to produce a vocabulary that is
accurate, accessible, descriptive and consistent.

276

Chapter 12: Behavior-Driven Development and RSpec

In the preceding quote, “Getting the words right”” refers to a common vocabulary, but the intention
applies equally as well to BDD as a whole. Many of the principles of BDD arise directly out of lessons
learned from developers experienced in the TDD community. After much reflection, these developers
found that writing tests was about far more than checking to see whether a particular piece of code ran
correctly, but the way that current testing frameworks are organized does not reveal these extra uses of
testing to the casual tester. Most of the testing frameworks available are, in a sense, the raw ingredients
required to test, without a story that brings them together in a meaningful way for all to see. BDD is
designed as the fast track toward the more evolved virtues of testing, namely so that:

0 Writing tests is an excellent way to motivate and inform API development.

0 Writing tests provides documentation for the intended use of your code.

Q Tests act as a bridge between the nontechnical requirements of a system and their technical
implementations.

0 Well-designed and communicated tests can double as a system specification.

0 Writing tests is really about describing the expected behavior of the different actors in your
system. This final item is the most important one from the philosophical perspective of BDD.

So, from a coding standpoint, BDD involves a set of activities similar to the ones you are accustomed to,
but from a process standpoint, it looks and feels very different. These differences aim to put a spotlight
on the preceding bulleted ideas right from the get-go.

BDD is all about stories. A story is a unit of discovery used to determine what your application intends
to accomplish. The idea is borrowed from the Extreme Programming discipline, in which a user story is
a small description of desired functionality from the perspective of a user. In BDD, the language used to
define a story is a bit more structured, always taking the form shown in Figure 12-1.

Story
Title: _ _ _ _ _ ______._
1.|2s a < ragle >
2.|I want < Jeature >
3.[So that < benefiz >
Figure 12-1

So a BDD story defines a role, a feature, and a benefit that will come from that feature. This story pro-
vides the basis for a round of development that will turn the story into something possible with your
application.

After choosing a story that you would like to pursue, the next step is to decide the acceptance criteria
that dictate the conditions under which the story should be possible and the conditions under which it

277

Chapter 12: Behavior-Driven Development and RSpec

should not be possible. How acceptance criteria are developed varies a bit from framework to framework
and developer to developer, so the description given here is designed to align with the RSpec framework
discussed later in the chapter. Rails developers using RSpec decompose a story in two different types of
objects: scenarios and specs.

0 Scenarios are similar to integration tests. They are high-level scripts that describe the interactions
of many parts of a system.

O Specs are most similar to unit tests. A spec describes the expected behavior of a particular object
under various conditions.

This decomposition of a story is shown in Figure 12-2.

Friend-search by
Scenario: location

1.[Given _a user and a_string location

2. I want Zhe user searches by lacation

e user should Compare to:
3. (Then Find -anstheruser Integration Tests

Story /

We need social | =

netwarking!

]
(and-mare cowbelll) \ Spec for: A user
Context : with friends

Compare to:
l Client Interview l * shauld be valid
* should wnot be lonely

* should be able to remave friends

* should reciprocate a _breakup

Compare to:
Unit Tests

Figure 12-2

Whereas traditional unit testing is aimed at finding a tight mapping between tests and units of code
functionality, behavioral testing is aimed at finding a mapping between tests and the specified behaviors
that your objects should exhibit when interacting with each other. Sometimes a behavior will involve

a small amount of code just as a unit test does, but other times it might not, and in the mindset of a
behavior-driven tester, that is okay: If the test fails, you will still be able to track the problem back to the
source just as though you had written a unit test for that piece of code. In this way, BDD focuses not on
the detailed states of objects but rather the overall interactions between objects.

So far, BDD sounds just like a pencil-and-paper activity to help you identify requirements for the com-
ponents of your system, but the big benefit is that there are domain-specific languages written on top
of Ruby that allow you to write human readable stories and specs that become your coding tests. The
rest of this chapter introduces you to RSpec and shows you how to use it to incorporate BDD into
your coding.

278

Chapter 12: Behavior-Driven Development and RSpec

RSpec: BDD for Ruby and Rails

RSpec is a behavior-driven framework for Ruby applications that supports both object-level specs and
application-level stories, the two types of acceptance criteria shown previously in Figure 12-2. Available
athttp://rspec.info, RSpec enjoys a growing community of both Ruby and Ruby on Rails developers.
RSpec integrates into Rails as a series of plug-ins: rspec and rspec_on_rails. These plug-ins provide a
number of extra features for your Rails project, including Rails-specific testing helpers and a custom set
of generators for use in creating objects on the command line.

You can use RSpec either in tandem with or instead of Rails’ default testing framework, and it operates
in a separate space so that the two can coexist peacefully. When you install RSpec on a Rails project, it
creates the spec/ and stories/ subfolders in your Rails root directory. Within the spec/ folder is a fur-
ther set of subdirectories reflecting the major components of your application: controllers/, fixtures/,
helpers/, models/, and views/.

This chapter addresses only spec-based decomposition (leaving out stories) for two reasons. First, spec-
based decomposition is the quickest route to getting a high value from very little learning curve, whereas
constructing stories with RSpec is an experimental and more difficult feature at the time of this writing.
Second, specs, as with unit tests, are often written before stories (integration tests), so in the introductory
materials here it makes more sense to use specs as an example. If you find that this style of coding aligns
with your interests, there is plenty more material available at rspec. info.

The Spec Development Cycle

The process of writing a spec begins when you decide on a particular object, or actor, in your application
whose expected behaviors you would like to describe. The goal of a spec is to isolate and describe a
particular object, so specs should be written separately for models, views, controllers, and helpers. If you
are developing specs in conjunction with stories, your spec development will likely be prompted by the
fact that the actor in question appears in the story and needs to exhibit certain behaviors in order for the
story to complete. The spec for an object is stored inside its own file with the suffix_spec, so a spec for
the User model object would be called user_spec.rb.

Spec Writing

4 N
Pick an object and define
the context i#,
S .) Test Writing
4 ™\ 4 N\
Write down a list of Implement the test for
“should” statements that statement
% o
17 / 12
4
For each should Observe that the test
statement fails
& -
/\/ v
Modify your code to
make the test succeed
G J
Figure 12-3

279

Chapter 12: Behavior-Driven Development and RSpec

After you have decided what you are going to model, you can divide the development process into two
separate parts even though they might occur during the same sitting or even within minutes of each
other. The first step is development of your behavioral specification at a sentence level. The second step
is the expansion of each sentence into a test and the development of the code necessary to pass the test.
Figure 12-3 shows this process.

Writing the Spec

The first stage in developing an object with specs is the creation of your specification. The specification is
really just the shelled version of the set of tests you hope to achieve, with none of the tests implemented
yet. At the end of this stage, you will have an executable document describing the different roles an object
in the system plays and a list of the behaviors that the object should or should not exhibit.

The outermost container within a spec is called a description. Each description lists either a string-based
context or a class object (or both) that it is about:

Description for a class in a particular context

describe Comment, "that is pending" do
Required behaviors go here
end

Description for a particular context not tied to a class

describe "any approval-requiring message" do
Required behaviors go here
end

In the first case, the description block states that it is about the Comment class in the particular context of a
comment ““that is pending.” The second description is simply about “any approval-requiring message.”
In this way, the describe container serves as a tool to help you organize your thinking to ensure proper
test coverage.

As an example of how to use describe blocks to partition your tests into clusters, imagine that you are
implementing a Rails-based blog with a sophisticated comment system. This comment system passes user
comments through a gauntlet of approval processes, their status going from PENDING to AKISMET_PASS to
APPROVED. A PENDING comment is one that has been added but not checked by Akismet. An AKISMET_PASS
comment is one that has passed an Akismet spam check but has not been approved by an administrator,
and an APPROVED comment is a spam-free comment that has been approved by the blogger and should
be displayed on the page. (Left out are the ““bad” states for spam and unapproved comments.) If each of
these comment states constitutes a different context that should guide the behavior of the Comment model
object, the Comment spec might contain a separate description block for each to help organize the tests
required:

describe Comment do
Required behaviors for all comments
end

describe Comment, "that is pending" do

Required behaviors for pending comments
end

280

Chapter 12: Behavior-Driven Development and RSpec

describe Comment, "that has passed Akismet" do
Required behaviors for comments that have passed Akismet
end

describe Comment, "that has been approved" to
Required behaviors for comments that have been approved
end

Within each describe block is a series of statements called examples. Each example is a sentence about the
object being described that states one particular behavior that the object should or should not engage in.
Developers who have worked on large software development contracts may have encountered the RSpec
notion of examples as “SHALL Statements,” a large tree of statements that dictate a system’s expected
behavior from a high level functional overview all the way down to the specific responses the system
should give to particular events and inputs.

3.4.2.142 The system SHALL display an error message if a falling cow
prevents operation of any of its required features.

Examples in RSpec follow the same idea, except far more fun because you write them as executable code
that serves simultaneously as a specification and a test. Each example is written using an object named
it, which stands for the object whose behavior is being tested. It is really a method that takes a string as
an argument that states some expected behavior about the object it.

describe Comment, "that has passed Akismet" do
it "should be active"
it "should be assigned to a moderator for approval"
it "should have an Akismet response"

end

describe "any component of the system" do
it "should display an error message if a falling cow causes an exception"
end

After you have enumerated all the examples that describe your object’s behavior, you have completed
the specification step in the development process. When you run an example as a test, each example can
result in one of three possible outcomes: pass, fail, and unimplemented. The preceding spec has four
unimplemented examples contained in two separate descriptions. To see whether these examples pass or
fail, you need to provide tests to implement each one.

Implementing Examples

You can implement an example by providing a block after the it statement. Inside the block, place the
code necessary to test the behavior that the example describes. In xUnit-style testing frameworks, test
developers use various assert statements to define the conditions that cause the test to fail. RSpec uses
should and should_not statements. RSpec dynamically adds should and should_not to the root Object
class in Ruby, so you can call the method from any object of your choosing.

3.should == 3
3.should_not ==

281

Chapter 12: Behavior-Driven Development and RSpec

The should and should_not methods can be used in a variety of ways. Their documentation says it best,
so it is copied here, from rpsec.org:

receiver.should == expected #any value
=> Passes if (receiver == expected)
receiver.should === expected #any value
=> Passes if (receiver === expected)
receiver.should =~ regexp
=> Passes if (receiver =~ regexp)

receiver.should (matcher)
=> Passes 1f matcher.matches? (receiver)

In addition to the preceding operators, RSpec allows you to substitute the method eql () for the double-
equals operator (which checks whether the two are the same value) and equal () for the triple-equals
operator (which checks whether the two are the same object).

The should and should_not methods enforce BDD’s actor and behavior-focused mindset. English is a
subject-verb-predicate language, so by naming the methods modal verbs, RSpec forces you into a mind-
set in which you are focused on the object and its desired behavior instead of just thinking about pieces
of data (the way assert would encourage). From a design standpoint, this is one of the key advantages
of BDD over TDD. Although they both accomplish the same set of operations from the computer’s per-
spective, the BDD process tricks your mind into trying to compose sentences with your code, therefore
affecting the way in which you design and write your tests.

The Sapir-Worf Hypothesis

The Sapir-Worf Hypothesis is the much-debated idea that the structure of language
affects the way in which our brain can understand and make decisions about the world.
Although it remains unknown how tightly our cognition is bound to the linguistic
abstractions we use to describe its inputs and outputs, many believe that there is at
least some connection between the two.

Many of the goals and quirks of BDD and Rails development are interesting because
they strive to optimize the way we think about and interact with our code just as much
as they strive to provide new functionality. Whether they succeed at this or not is for
you to decide, but it is interesting to pay attention to the intent behind the API and draw
parallels between DSLs such as the one ActiveRecord provides, BDD and RSpec, and
our ideas about human cognition. The point of methods such as object . should and
object.should_not is not so much to make the code easier to read but rather to prime
your mind to think in a certain way about the code you are about to write. The result is
a very different style of testing.

Matchers

If RSpec allowed examples to state only that objects should equal or should_not equal other objects, it
would be pretty difficult to write a spec that achieved full coverage of the behaviors you would like to

282

Chapter 12: Behavior-Driven Development and RSpec

describe. The last possibility in the preceding should / should_not documentation was not an operator
but an argument to the method called matcher. Matchers are a key part of the RSpec framework, and they
provide the basis for more complex definitions of what an object should or should not do.

A lot of dynamic programming wizardry allows RSpec to weave in several built-in matchers in sentence-
like fashion to your specs. The following table contains a nearly complete list of all the matchers that come
bundled with RSpec. For a complete and always up-to-date list, look at the Spec: :Matchers module in
the RSpec documentation, available at http://rspec.info/rdoc.

Matcher Method

Tests

be_{predicate}

be_true
be_false

be_nil

be_a_{predicate} (*args)
be_an_{predicate} (*args)

be_close(expected, delta)

change (receiver, message,
&block)

change(...)
.by_at_least (x)
.by_at_most (y)

Tests the target’s response to the message predicate?

user.should be_valid

Tests the Boolean value of the target.

result.should be_true

Tests whether the target is nil.

wallet.contents.should_not be_nil

Tests the target’s response to the message predicate (*args) .

ted.should be_an_instance_of (Person)

Tests whether the target is with delta amount of the expected value.

grenade.longitude.should be_close (50, 10)

[When should / should_not is called on a Proc |

Tests whether the receiver.message results in a different value after
the Proc was called compared to before. A block may be passed instead

of a receiver and message, in which case the block’s return value is used
to determine whether something has changed.

lambda {
chapter.add_page (page)
}.should change (book, :pagecount)

OR

lambda {
chapter.add_page (page) }.should change { book.pagecount }
[Chained with a change matcher]

Tests whether the change in the return value of receiver.message was
at least or at most a certain numeric amount.

Continued

283

Chapter 12: Behavior-Driven Development and RSpec

Matcher Method

Tests

change(...)
.from(old)
.to(new)

have (number) .collection

have (number) .counter

have_at_least (num)
have_at_most (num)

include (*args)

lambda {
chapter.add_page (page)
}.should change (book, :pagecount).
by_at_least (1)

lambda {
chapter.add_page (page)
}.should change (book, :pagecount).
by_at_most (1)

[Chained with a change matcher]

Tests whether the value changed from the given “from” value to the
given “to” value.

n = book.pagecount

lambda {
chapter.add_page (page)
}.should change (book, :pagecount).
from(n) .
to(n+l)

If the subject of should / should_not has a collection accessible via the
message collection, this will test whether the collection size is equal
to number.

book.should have(300) .pages
Equivalent to
book.pages.length.should == 300

If the subject of should / should_not is a collection or a string, the
counter is purely “’syntactic sugar” for readability’s sake and is thrown
away.

[:VA, :MD, :DC].should have(3).states
"Hello".should have(5).letters
[":)"].should have(l).emoticon

Operates similarly to have except with an inequality instead of an exact
number. Will not work with should_not.

person.brain.should have_at_most (1)

Tests whether the subject of should / should_not contains all the

provided arguments.

colors.should include(:red, :blue)
"breakfast".should_not include("gvbdfs")

284

Chapter 12: Behavior-Driven Development and RSpec

Matcher Method Tests

match (expression) Tests whether the subject matches the provided regular expression.

username.should match(/"[A-Za-Z]1{5,}$/)

raise_error Tests whether a Proc raises an error. Optionally allows you to specify
raise_error (ErrorClass) which error should be thrown and the message it should contain (or a
raise_error (Err, msg) regular expression that should match the message)
raise_error (Err, regexp)
lambda {
5/ 0

}.should raise_error (ZeroDivisionError)

respond_to (messages) Tests whether the option of the should / should_not call responds to
all the messages provided.

person.should respond_to(:name, :save)

The extensive collection of matchers attempts to cover a wide range of behavior that you might want to
test on an object in your system. In the example spec you will build later, you will see how some of these
matchers can be applied, but most are somewhat self-documenting in that they are all verbs that make
sense in the context of Ruby objects.

If that list wasn’t long enough for you, the RSpec Rails plug-in adds even more matchers relevant to your
models, views, and controllers — all of which are documented on the RSpec web site.

Custom Matchers

Each application you write will be about a different domain that likely has various rules and abstractions
worth creating your own matchers for. A matcher is any object that can respond to the following methods
(remember that Ruby is duck typed, so an object can be described by its capabilities rather than its class
lineage):

matches? (actual)

failure_message
negative_failure_message #optional
description #optional

So writing a matcher is a relatively painless process. Usually, a matcher should come bundled with a
method that creates it so that it can be instantiated in a sentence-like manner as the matchers you have
already seen.

Location-based services is one of the coming booms on the Web, so if you are planning a web application
that involves geolocations, you might want to create several matchers that help you test your geospatial
processing. A “be_within. . .of” matcher might be implemented as follows (shown completely without

error checking, and pretending that the Earth has been projected onto a flat XY plane):

class BeWithinMatcher

285

Chapter 12: Behavior-Driven Development and RSpec

def initialize(distance)
@distance = distance
end

def of (other)
@other = other
self

end

def matches? (target)
@target = target

x_dist = @target.location.x - @other.location.x
y_dist = @target.location.y - @other.location.y
dist = Math::sqgrt(x_dist ** 2 + y_dist ** 2)

dist <= @distance
end

def failure_message
"expected #{@target.inspect} to be within #{@distance} units of #{@other.inspect}"
end

def negative_failure_message
"expected #{@target.inspect} not to be within #{@distance} units of
#{@other.inspect}"
end
end

The BewithinMatcher takes a distance unit in its constructor and allows some other object for comparison
to be set with the of (other) method. Note how the of (other) method returns self; this is a common
practice among Ruby objects whose methods are meant to be chained together. The matches? method
takes a target object and uses the Pythagorean theorem to see whether the distance between the locations
of two objects is within the distance provided at initialization time.

To allow this matcher to be integrated smoothly into your specs in sentence-like fashion, also add the
following method on the root Object:

def be_within (expected)
BeWithinMatcher.new (expected)
end

And finally, you can test location-aware objects with the new matcher:

it "should obey the Pythagorean theorem" do
Set up a 3-4-5 triangle with (1,1) as the root
personl = Person.new(Coordinate.new(1l, 4))
person2 = Person.new(Coordinate.new(5, 1)

personl.should be_within(5) .of (person2)

personl.should_not be_within(4).of (person2)
end

286

Chapter 12: Behavior-Driven Development and RSpec

This matcher does not have any notion of units or error checking, but it demonstrates how simple it is
to extend RSpec to include domain-specific testing methods to help you minimize code duplication and
create specs that are easy to write and come back to later as documentation.

Before and After

Sometimes you would like a certain bit of code to occur before or after each test. In the xUnit testing
frameworks, the setUp and tearDown methods support this functionality. In RSpec, this is accomplished
with before and after blocks. These methods work just like an it call except they are passed a symbol
instead of a String. Passing one of these methods the :a11 symbol causes the given block to be executed
before (or after) all the examples in the description. Passing it the : each symbol causes it to be executed
once before (or after) each example in the description. The placement of the before and after calls within
the description block does not matter.

describe User, 'during the day' do

before(:all) do
@Quser = User.new
@Quser .wake_up
end

before(:each) do

@Quser .wash_hands

@refrigerator = Refrigerator.get_instance
end

it "should eat breakfast" do
Have a hearty breakfast, but not TOO hearty!
lambda {
@Quser.eat_breakfast
}.should change (@refrigerator, :item_count) .by_at_most(5)
end

it "should eat lunch" # Unimplemented
it "should eat dinner" # Unimplemented

after(:each) do
@user.clean_dishes
end

after(:all) do
@Quser.sleep
end

end

In the preceding code, the before and after statements paired with :all get executed as the description
of User begins and ends, and the ones paired with :each get executed before and after each example in

the description. If you don’t pass an argument to the before or after methods, they will assume :each,
because this is the option that you will be using most of the time. Note that the RSpec team discourages

use of the :all option unless it is particularly needed. On rspec.org they note:

287

Chapter 12: Behavior-Driven Development and RSpec

Warning: The use of #before(:all) and #after(:all) is generally dis-
couraged because it introduces dependencies between the Examples. Still, it
might prove useful for very expensive operations if you know what you are
doing.

An Example Trip through the Development
Cycle

To demonstrate the last section, you'll explore an example trip through an RSpec development cycle
for the cooking site from Chapter 3, “The Server as an Application.” Suppose you would like to take
the social networking aspects of that site a step further by allowing users to befriend other users. This
example narrates the process from story development to spec development to application development
that would ensue using BDD.

Part 1: Writing The Story

First, you find a notecard, real or virtual, and record the basic story that captures the new capability you
would like to create and the value that it will add. This notecard is shown in Figure 12-4.

Site: Top Secret Cooking Site

Story: Social Netwarking

1. As a _user of the system

td be able ta netwark
2. T want _ With other users

3. So that A community is built

Figure 12-4

Even though writing down the story seems like unnecessary bookkeeping, it is an important part of
the process. When pursuing the rapid design cycles of agile development, your efforts are more power-
ful with small, reinforcing self-discipline steps such as this. Even if you are coding by yourself, keep a
notepad lying around — it helps you scope the coding tasks in front of you in case you find yourself
awake at 4 a.m. wondering how you ended up reimplementing part of ActiveRecord.

Part 2: Writing the Specs

In the next part of the RSpec development cycle, you think about how to make this story possible. Many
elements of the site need to be developed: Migrations need to be included to add friendship support to
the schema; the model needs to contain methods to encapsulate the basic social networking functionality;
the controller needs to add an API into this functionality; and the view needs to surface this new feature
to the user. For this example, you will remain focused on the model.

288

Chapter 12: Behavior-Driven Development and RSpec

You decide that the User object will be the area in your application where the friendship code will surface
as a behavior, so the spec for the User object is where the new behavior descriptions will reside. Create
a new file called user_spec.rb (if it doesn’t already exist) in the spec/models directory of your Rails
project. Within this user spec, you will add two new descriptions of a User object’s expected behavior:
one for a user with friends and another for a user without.

Even though coding the unimplemented spec is fast, pull out your pen again along with two more note-
cards and begin to jot a list of the behaviors that each of the two user conditions should adhere to. Leaving
the computer screen to write by hand is a good break to take now and then, especially when in design
mode. Writing by hand slows down thinking enough for your subconscious to catch up and help out a
bit. Figures 12-5 and 12-6 illustrate description cards for the two user conditions.

Thing: user
Context: with no friends

* shauld be valid

* should be lonely

* should have o friends

* should be able to make a friend

* should reciprocate the friendship of others

Figure 12-5

Thing: user
Context: with i friends

* should be valid

* should not be lonely
* should be able to remave friends

* should reciprocate a breakup

Figure 12-6

After you have determined the initial set of behaviors necessary to describe how a User acts in terms of
social networking, begin transferring it into the user_spec.rb file.

require File.dirname(__FILE_) + '/../spec_helper'
describe User, "with no friends" do

it "should be valid"

289

Chapter 12: Behavior-Driven Development and RSpec

it "should be lonely"

it "should have no friends"

it "should be able to make a friend"

it "should accept the friendship of others"

end
describe User, "With friends" do
it "should be valid"
it "should not be lonely"
it "should be able to remove friends"

it "should reciprocate a breakup"

end

Running the spec, you see your two descriptions and nine unimplemented examples. In addition to
serving as a test suite, the reports generated by RSpec are an excellent way to get a summary of a partic-
ular class from the standpoint of its intended behavior, as shown in Figure 12-7.

RSpec results

9 examples, 0 failures, 9 pending

RSpec Results Finished in 0.678982 seconds
User with no friends
should be valid (PENDING: Not Yet Implemented)
should be lonely (FENDING: Not Yet Implemented)
should have no friends (PENDING: Not Yet Implemented)
should be able to make a friend (PENDING: Not Yet Implemented)

should accept the friendship of others (PENDING: Mot Yet Implemented)

User With friends
should be valid (PENDING: Not Yet Implemented)
should not be lonely (PENDING: Not Yet Implemented)
should be able to remove friends (PENDING: Not Yet Implemented)

should reciprocate a breakup (PENDING: Not Yet Implemented)

Figure 12-7

Part 3: Initializing and Writing a Basic Test

What order you choose to implement an object’s behavioral examples does not matter. RSpec might run
them in any order anyway, so it makes sense to take care of the low-hanging fruit first. As you begin
to think about how you would implement each test, you will likely realize that the capabilities required
for some tests are dependent on those required by others. This, too, will help you decide what order in
which to write them.

Before you write any tests, you need to write a before block to set up two User objects to use in each of
the tests. Above the first example, add the following code:

290

Chapter 12: Behavior-Driven Development and RSpec

before(:each) do
@harry = User.new
@sally = User.new
end

This code will execute before each test, preparing the variables that you will be testing for proper
behavior.

The first example is common to see in a description block for an ActiveRecord model object. It tests the

conditions under which the model object should be considered valid, which in this case means a newly

created User with an empty argument list in the constructor. In some ways, this is also an integrity check
for the rest of the behavior tests that you will perform, because it will ensure that there are no validation
problems with the object you are using for the other tests.

Expand the “should be valid” example into a full test by adding a block that contains the test body.

it "should be valid" do
@harry.should be_valid
@sally.should be_valid
end

You know that the be_{predicate} matcher examines the target’s response to the {predicate}? method
call, so @harry.should be_valid should pass if @harry.valid? returns true.

Never write too many tests before you take the steps to ensure they pass; that way, you minimize the
number of issues you deal with at a single time, and you have the added bonus of a feeling of constant,
incremental successes as you turn red FAIL messages into green PASS ones. Running the RSpec tests
and observing the result in Figure 12-8, you see that your new test passes, so you can continue with
development. Figure 12-8 is black and white, but in the RSpec plug-in for TextMate on the Macintosh,
unimplemented tests are shown in yellow, failing tests are shown in red, and passing tests (the top line
in the screenshot below, reading ““should be valid”’) are shown in green.

£ I

RSpec results

9 examples, O failures, 8 pending
Rspec Res"'IIts Finished in 0.80495 seconds

User with no friends
should be valid
should be lonely (PENDING: Not Yet Implemented)
should have no friends (PENDING: Not Yet Implemented)
should be able to make a friend (PENDING: Not Yet Implementad)

should accept the friendship of others (FENDING: Not Yet Implemented)

R .

Figure 12-8

Part 4: Writing Behavior Tests That Motivate Development

When you're deciding which example to implement next, dependencies come into play. All the remaining
examples require some implementation code that does not yet exist, but “should have no friends”

291

Chapter 12: Behavior-Driven Development and RSpec

appears to be the least amount of work of the four to achieve a passing score, so you will address that
next. Implement it with the following code, which assumes that User acts in the standard ActiveRecord
fashion and maintains a friends association:

it "should have no friends" do
@harry.should have(:no).friends # Meaning: @harry.friends.size should equal 0
end

Recall that have creates a Matcher object that will inspect the collection returned from the provided
method call (friends) and pass if the size of the collection is equal to the provided argument. In this
case, the test passes if @harry.friends.lengthis zero.

Running the tests once more after you implement this behavior example, you see that it fails, as shown
in Figure 12-9.

RSpec results

S examples, 1 failure, 3 pending

RSPEC Results Finished in 0.204614 seconds

User with no friends

should be valid
should be lonely (PENDING: Not Yet Implemented)
should have no friends

undefined method ~friends' for #<User id: nil, created_ot: nil, updated_at: nil>

./spec/models/user_spec.rb:19

it "should have no friends" do
Buser.should have(:no).friends

end

should be able to make a friend (PENDING: Not Yet Implemented)

should accept the friendship of others (PENDING: Not Yet Implemented)

Figure 12-9

Not only does RSpec report the failure, but it also tells you the reason for failure (an undefined friends
method on the User object) and the line in the spec on which it occurred (@harry.should have (:no)
.friends). This is how implementation is motivated by testing: You defined an expected behavior that
the User object should exhibit and implemented a test to check for that behavior, and now you must
implement a feature to make that test pass.

To fix this failing behavior, you need to create an association that enables your User object to have a
friends method that represents the user’s collection of friends. First, you need some table to record
friendship information. Create a new Friendship model and migration using the script/generate
command, and define two integer fields on the model: user_id and friend_id. You will use a single
Friendship object to represent a unidirectional friendship extended from the user with ID user_id to
the user with ID friend_id.

tedS script/generate rspec_model friendship user_id:integer friend_id:integer

292

Chapter 12: Behavior-Driven Development and RSpec

Now open your User model and add a has_many association that links users using the friendships table
as a join:

has_many :friends, :class_name => "User",
:join_table => "friendships",
:foreign_key => "user_id",
:association_foreign_key => "friend_id"

This association should create the friends method required by your behavioral test and should link
modifications of that collection to the Friendship table in the database. Run the spec again to observe
that the example now passes.

Part 5: Completing the Behavioral Test Implementations

The next low-hanging fruit is the ““should be lonely”” example. Now that you have implemented the
friends association, determining whether the user is lonely should be a simple friends.size check. But
first you write the test, thus defining the way you would like to interact with this future bit of function-
ality. This is why test writing is often said to motivate API development. Here, you will write the test in
such a way that your API is expected to provide a lonely? method.

it "should be lonely" do
@harry.should be_lonley
end

Running the spec to see that it fails, you then add the lonely? method implementation on the User object:

def lonely?
friends.empty?
end

Making new friends, too, should be a simple test. Because of the code that ActiveRecord and associations
create for you, you do not need this test from a code coverage standpoint — it is superfluous to write
tests for code that is a part of the framework. However, it is an important behavior of the User object and
serves as a test that you implemented the association correctly, so it is worth including:

it "should be able to make a friend" do
lambda {
@harry.friends << @sally
}.should change { @harry.friends.size }.by (1)

@harry.friends.should include(@sally)
end

Running the spec once again, you see that it passes with no further coding required.
Finally, you reach the last behavioral requirement for this describe block:

it "should accept the friendship of others"

293

Chapter 12: Behavior-Driven Development and RSpec

Even though your model is built off of a unidirectional friendship object, you would really like friendship
to be a bidirectional concept. For simplicity, you will not require any sort of confirmation by the other
party, and instead will just enforce the behavior that friendship should be automatically reciprocated.

To implement the test for this, you will first create a new friendship from @sally to @harry and then
check to make sure that @harry has reciprocated such that @sally is in his list of friends.

it "should accept the friendship of others" do
@sally.friends << @harry
@harry.should have (1) .friends
@harry.friends.should include(@sally)
end

Running this test, you see that it fails.

From the test output in Figure 12-10, you see that @harry was supposed to have one friend after @sally’s
friend addition, but instead it had zero. This is expected because it was @sally who added the friend,
not @harry, and you haven’t implemented the reciprocation yet. You fix this problem by adding a
reciprocate_friendship instance method on User that barges into another user’s friends list and adds
self to it if it isn’t already there (how presumptuous!).

def reciprocate_friendship (newfriend)
unless newfriend.friends.include? (self)
newfriend. friends << self
end
end

RSpec results

5 examples, 1 failure

RSPEC Results Finished in 0.17812 seconds

User with no friends

should be valid

should be lonely

should have no friends

should be able to make a friend
should accept the friendship of others

expected 1 friends, got @

./spec/models/user_spec.rb:32

it "should accept the friendship of others" do
@other.friends << Buser
Buser.should have(1).friends

Buser, friends.should include(@other)
end

RN ERE

Figure 12-10

Then add a callback to this method on the friends association for after a new friend is added (infinite
recursion will occur if you do it before):

294

Chapter 12: Behavior-Driven Development and RSpec

has_and_belongs_to_many :friends,
:class_name => "User",
:join_table => "friendships",
:association_foreign_key => "friend_id",
:foreign_key => "user_id",
:after_add => :reciprocate_friendship

Running the spec for a final time, you see the display in Figure 12-11, showing all passes.

RSpec results

5 examples, 0 failures

RSpec Results Finished in 0.173589 seconds

User with no friends
I should be valid

I should be lonely

should have no friends

should be able to make a friend

should accept the friendship of others

Figure 12-11

The RSpec not only lets you know when you have accomplished the development goals you set but also
serves as a nice way to summarize the behaviors of a described object from a usage standpoint. If a new
developer on the project (or an old one, coming back to code written long ago) wanted to know what

a User could do, he or she need look only at the spec document. If the developer wants to know how
to perform any of the behaviors listed in the spec, the spec implementation serves as a short, simple
example of that use case, finishing with a series of should and should_not statements that describe what
the expected results will be.

But Wait, There’s More

This chapter only scratches the surface of RSpec’s capabilities to introduce you to BDD. There is a whole
world of features included in RSpec that you can begin to investigate as you become more comfortable
with the framework and want to use it more extensively:

Q User stories to tie together and test different system components

0 Mock objects and stubs to help isolate objects for testing

Q Model, View, and Controller-specific testing helpers

0 Continuous build integration and developer tools
For resources on the Web, check out the RSpec home page at http://rspec.info/. Geoffrey Grosen-

bach’s PeepCode (http://peepcode.com) also has several excellent webcasts for sale that contain
narrative walkthroughs of many of RSpec’s features from beginning to advanced.

295

Chapter 12: Behavior-Driven Development and RSpec

Summary

BDD is an enjoyable and effective way to develop any application, and RSpec’s Ruby DSL for BDD makes
it especially powerful for Rails developers. Using RSpec does not require many new tricks or add heavy
time commitments to your coding because it is a reorganization of many of the tasks that you probably
already pursue in a less unified manner.

When you develop a project in this new way, you start with the overall goals, or stories, that you would
like to accomplish. Each of these motivates specs for the various objects in your system, each containing
behavioral examples of the object in various contexts. These examples are transformed into unit-like tests
that perform the steps necessary to achieve a particular behavior and verify that it did (or didn’t) happen.
The development of tests, in turn, motivates development on the actual object being tested so that it can
perform the behavior being asked of it.

In addition to providing the benefit of continuous testing for your Rails application, RSpec is a powerful
design and communication tool. Spec design informs the interface choices that you eventually make
about your objects to support their required behavior. The spec itself forms a living document, both of
the system’s capabilities and of a reference implementation for each capability. And the half-implemented
spec serves as a roadmap to guide your development tasks toward completion.

296

A

Action Pack, 25-26

ActionView, 25
actions, 50, 54. See also controllers, in MVC
ActionView, 25
ActiveRecord, xxi, 25, 28-30

associations, 29

blocks, 190-192

scope of, 191-192
model, MVC, 61-62
patterns, 61-62

ActiveResource, 25, 70
Agile software, 55-56

philosophy manifesto, 55
Agile web Development with Rails

(Hansson/Thomas), 22

AJAX. See Asynchronous Javascript and XML
Ajax on Rails (Raymond), 102
aliasing methods, 221-222
Allen, David, 37
American Gladiator, 36
Andreessen, Marc, 9
AOP. See aspect-oriented programming

Apache Hypertext Transfer Protocol (HTTP), 118

API applications, web, xix, 90-113
ActiveRecord, xxi, 25, 28-30
associations, 29
model, MVC, 61-62
AJAX, 155-156
custom MIME type additions, 103-105
creation of, 105
registration, 104
response formats, 103
documentation, 60-61
metering, 105-109
algorithm, 107

Index

filters, 108-109
user authentication, 105-107
method calls, 96-97
components, 96
method_missing method, 241, 247-248
overlaying, 97-103
non-HTML results, 99-100
RDF, 103
response_to method, 97-99
RSS, 101-103
XML, 100-101
REST, 126-127
routing, 93-96
definition, 94-95
Libs, 94
naming methods, 94
options hash, 95
templates, 95
service, 109-112
definitions, 110
implementation, 111-112
structs, 112
SOAP, 109-110
URLs, 91-93, 95-96
concept v. function for, 92
design, 95-96
development of, 91-92
hierarchy, 93

Array.each method, 170, 237-240
artofrails.com, 105, 117, 145
aspect-oriented programming (AOP), 38

blocks, 187-189
benchmarking, 188-189

associations, 29

model objects, MVC, 62
polymorphic, 68-70

Index

Asynchronous Javascript and XML (AJAX)

Asynchronous Javascript and XML (AJAX), xxi,
140-166. See also compiled to web style,
AJAX; in-place application style, AJAX;
partial style, AJAX; proxy style, AJAX; puppet

style, AJAX

as API, 155-156
design issues, 141-143
development of, 140-141
elegant degradation, 162-163
frameworks, 142-144

Dojo, 144

Ext, 144

jQuery, 144

MooTools, 144

Prototype Javascript library, 142-143

script.aculo.us libraries, 31, 143
Yahoo! Ul, 143
Ruby on Rails, 157-162
inner layouts, 159-160
styles, 144-155
compiled-to-web, 151-153
in-place application style, 153-155

partial, 148-149, 157-159, 163-164

proxy, 146-148

puppet, 149-151, 160-162
user interfaces, 164-165

DataTables, 164-165
XLMHttpRequest, 141

backward compatibility workaround,
120-122
partial style AJAX, 163-164
badge summary, 76
BDD. See behavior-driven development

behavior-driven development (BDD), xxi, 273,

276-296. See also RSpec
principles, 276-277
RSpec, 279-295
additional features, 295
before/after statements, 287-288

development cycle, 279-280, 288-295

implementing examples, 280-281
matchers, 28-287
writing process, 280-281

298

benchmarking, 188-189
Berners-Lee, Tim, 5, 8
Bina, Eric, 9
blocks, 169-195
ActiveRecord transactions, 190-192
scope of, 191-192
AOP, 187-189
benchmarking, 188-189
Array.each method, 170
callbacks, 194-195
code wrapping, 172
definition, 169-173
dual-use functions, 194
environmental effects, 184-186
filters, 189-190
HTML writing, 192-193
iterations, 186-187
procs and, 180-181
source environment influences, 182
XML, 193-194
Blogger, 4
Brooks, Frederick, 43
browsers, 6, 8-9
Internet Explorer, 9
Mosaic, 8-9
Netscape, 8
buddy lists, 146, 148
compiled to web style AJAX, 152
in-place application style AJAX, 154
partial style AJAX, 148
proxy style, 146
puppet style AJAX, 151

C

CakePHO for PHP, 22

callbacks, 194-195

Calliau, Robert, 6

CGl. See Common Gateway Interface

class Class; end method, 215-216

class«Class method, 218-219

class_eval method, 213-215
instance_eval v., 219

class-level endpoint, 121

code view, Ruby on Rails, 25-26
ActionPack, 25-26

duck-typed languages

ActiveRecord, 25
ActiveResource, 25
code wrapping, 172
code-first development, 13-15
advantages/disadvantages, 14
control logic, 15
HTML, 14
Perl, 13
Codelgniter for PHP, 22
commands, 11
Common Gateway Interface (CGl), 12-18
code-first development, 13-15
advantages/disadvantages, 14
control logic, 15
HTML, 14
Perl, 13
document-first development, 13, 15-18
code juxtaposition, 18
comments, 16-17
components, 15-16
document storage, 16
HTML, 17
HTML documents, 12-13
duplication, 15
Perl language, 13
compiled to web style, AJAX, 151-153
buddy list, 152
GWT, 152
meebo, 153
constants, Ruby on Rails, 249-250
controllers, in MVC, 47, 50, 53-54, 77-88. See
also outsourcing
CRUD, 78-80
scaffold generator, 79-80
dependency graph, 47
operation patterns, 78
outsourcing, 83-87
data-related operations, 85-87
filters, 77, 84-85
validations, 87
refactoring, 65, 87-88
reset_password method, 65
resource, 122
two-step actions, 80-83
flash variables, 83
GET/POST paradigm, 81

object displays, 82-83
object mutations, 82-83
types, 53-54
‘“Create, Read, Update, Delete’’ (CRUD),
78-80
endpoints, 123
HTTP, 119
partial style AJAX, 157-159
scaffold generator, 79-80
CRUD. See ‘‘Create, Read, Update, Delete”’
CSS, 2,4
custom getters, 272-273
custom MIME types. See MIME types, custom

D

database(s), Rails code, 24
Dean, Jeffrey, 37
deep nesting, 135
define_method, 228-234
class definitions, 228
scope of, 230-232
variables, 231
DELETE method, 8
Digg, 4
directories, Rails code, 23-24
Disqus, 127-128
Django for Python, 22
document-first development, 13, 15-18
code juxtaposition, 18
comments, 16-17
components, 15-16
document storage, 16
HTML, 17
documents, on web, 5
document-first development, 13, 15-18
Google docs, 2, 12
UDIs, 6
Dojo, 144
domain-specific language (DSL), 27, 227-228
‘““‘Don’t Repeat Yourself’’ (DRY) philosophy, 128
DRY. See ‘“‘Don’t Repeat Yourself’’ philosophy
DSL. See domain-specific language
duck punching. See monkey patching
duck-typed languages, 205

299

Index

elegant degradation

elegant degradation, 162-163
endpoints, 120-121
class-level, 121
instance-level, 121
non-REST CRUD, 123
Enquire Within Upon Everything (Berners-Lee), 5
‘‘Essence and Accidents of Software
Engineering’’ (Brooks), 43
eval method, monkey patching, 211-219
class Class; end, 215-216
class«Class, 218-219
class_eval, 213-215
instance_eval, 216-218
Ewing, Patrick, 211
Ext (AJAX framework), 144
Extensible Markup Language (XML), 100-101.
See also Asynchronous Javascript and XML
AJAX, 140-166
as API, 155-156
design issues, 141-143
development of, 140-141
elegant degradation, 162-163
frameworks, 142-144
Ruby on Rails, 157-162
styles, 144-155
user interfaces, 164-165
XLMHttpRequest, 141
blocks, 192-193, 193-194
RXML, 100-101

F

facades, 242-243
Facebook, 4, 79, 127-128
Fielding, Roy, 118
filters, 77
blocks, 189-190
metering, 108-109
method_missing method, 243-246
with outsourcing, 84-85
flash variables, 66
two-step actions, 83
Flickr, 2, 4, 79, 91, 127-128

300

forms
HTTP, 10-12
partials, 75
extended search, 75
search, 75
Fowler, Martin, 61
Fulciniti, Alessandro, 39

G

GET method, 7
GET/POST paradigm, 81
Getting Things Done: The Art of Stress (Allen), 37
Ghemawat, Sanjay, 37
GMail, 79
Google
docs, 2,12
GWT, 72
MapReduce, 37-38
Google Web Toolkit (GWT), 72
compiled to web style AJAX, 152
gorilla patching. See monkey patching
graphical user interface (GUI), 49
Grosenbach, Geoffrey, 295
guerilla patching. See monkey patching
GUL. See graphical user interface
GWT. See Google Web Toolkit

H

Hagen, Steve, 45-46
Hanselman, Scott, 36
Hansson, David Heinemeier, 22, 36
hashes, 271-272
Hernandez, Obie, 22
Hewlett Packard, 41
Hibernate, 48
HTML. See Hypertext Markup Language
HTTP. See Hypertext Transfer Protocol
Hypertext Markup Language (HTML), 2, 4-6
blocks, 192-193
CGl, 12-13
code-first development, 14
document-first development, 17
MVC applications, static prototype for, 53

language(s)

overlaying in web API, 99-100

page development, 9-10
stylesheets, 10
TABLE tag, 10

RHTML, 101

Ruby on Rails libraries, 30-31

XHTML, 4

Hypertext Transfer Protocol (HTTP), 5-8, 10-12

Apache, 118

commands, 11

CRUD, 119-120

development of, 7-8

forms, 10-12

primary methods, 7-8

REST, 119-128
APl web applications, 126-127
backward compatibility workaround, 120-122
CRUD, 119-120, 123
endpoints, 120-121
mapping, 122
networking, 127-128
refactoring, 123-126
resource controllers, 122
specification excerpts, 120

IANA. See Internet Assigned Numbers Authority
IBM, 41
IDE. See Integrated Development Environment
inline reference partial, 76-77
in-place application style, AJAX, 153-155
buddy list, 154
meebo, 154-155
instance_eval method, 216-218
class_eval v., 219
instance-level endpoint, 121
Integrated Development Environment (IDE), 71
Interactive Ruby (IRB), 172-173
interface(s)
AJAX, 164-165
DataTables, 164-165
CGl, 12-18
code-first development, 13-15
document-first development, 13, 15-18

HTML documents, 12-13
Perl language, 13
graphical user interface, 49
Internet. See World Wide Web
Internet Assigned Numbers Authority (IANA), 104
Internet Explorer, 9, 140
iPhone, 153
IRB. See Interactive Ruby

J

Java Swing, 48
JavaScript, 2, 31-32. See also Asynchronous
Javascript and XML
AJAX, xxi, 31, 140-166
as API, 155-156
design issues, 141-143
development of, 140-141
elegant degradation, 162-163
frameworks, 142-144
Ruby on Rails, 157-162
styles, 144-155
user interfaces, 164-165
XLMHttpRequest, 141
Prototype library, 142-143
Ruby on Rails, 31-32, 72-73
RJS, 31-32
view, in MVC, 72-73
GWT, 72
Jetty, 23
jQuery, 144

K

Keys, Adam, 211

L

lambda-created procs, 178
LAMP model, of schema development,
254-256
language(s)
DSL, 27
duck-typed, 205
HTML, 2, 4-6

301

Index

language(s) (continued)

language(s) (continued)
JavaScript, 2, 31-32, 72-73
Perl, 13
RJS, 31-32
Ruby on Rails, 27-32
ActiveRecord, 28-30
associations, 29
HTML helper libraries, 30-31
plug-ins, 32
REST-based routes, 30
RJS, 31-32
symbols, 27
UML, 51
XML, 100-101
RXML, 100-101
YAML, 23
layouts, 159-160
Lerdorf, Rasmus, 16

mapping, 67-68
geocoding, 67
HTTP, 122
routing resources, 129-133
anonymous, 129
automatically provided, 131
named, 129-133
shorthand for, 132-133
MapReduce, 37-38
matchers, 282-287
custom, 285-287
methods, 283-285
meebo, 147-149
compiled to web style AJAX, 153

in-place application style AJAX, 154-155

partial style AJAX, 149

proxy style AJAX, 147-148

puppet style AJAX, 151
Merb for Ruby, 22
message paradigms, 176-177
metaprogramming, 169
metering, 105-109

algorithm, 107

filters, 108-109

user authentication, 105-107

302

method(s)

aliasing, 221-222
Array.each, 170
calls, API applications, 96-97
define_method, 228-234
class definitions, 228
scope of, 230-232
variables, 231
DELETE, 8
eval, 211-219
class Class; end, 215-216
class«Class, 218-219
class_eval, 213-215
instance_eval, 216-218
GET, 7
matchers, 283-285
method_missing, xxi, 241-246
creative APl applications, 241, 247-248
facades, 242-243
filters, 243-246
implementation, 242-246
mixins, 201
POST, 7
PUT, 8
refactored controller, 65
reset_password, 65
respond_to, 97-99
Ruby on Rails, 173-177, 234-248,
250-251
Array.each, 237-240
message paradigms, 176-177
method_missing, 241-246
scope, 175-176

method_missing method, xxi, 241-246

creative API applications, 241, 247-248
data-driven objects, 241, 246-247
easy reading, 241

facades, 242-243

filters, 243-246

implementation, 242-246

methods, method_missing

data-driven objects, 241, 246-247
easy reading, 241

Microsoft, 41

early web page rendering, 9
Windows, 3—-4

MVC applications

migrations, 256-260
writing, 257-259
MIME types, custom, 103-105
creation of, 105
registration, 104
response formats, 103
mixing, 199, 202-203
extend with, 204-205
modules into classes, 202-203
mixins, 198-210
module codes, 199-200
methods, 201
source code, 206-210
examples, 207-210
Yahoo! Ul, 208-210
model, in MVC, 47, 61-77
ActiveRDF, 70
ActiveRecord, 61-62
patterns, 61-62
ActiveResource, 70
exceptions, 64-67
definitions, 66-67
flash variables, 66
mapping, 67-68
geocoding, 67
objects, 62-64
associations, 62
hierarchy, 62
portable code, 64
user table stores, 63
polymorphic associations, 68-70
Model-Viewer-Controller (MVC) applications,

32-33, 47-57, 61-77. See also controllers,

in MVC; model, in MVC; view, in MVC
Agile software, 55-56
philosophy manifesto, 55
architecture, 49
pages v. views, 49
components, 47-48, 50, 53-54
actions, 50, 54
controllers, 47, 50, 53-54, 77-88
CRUD, 78-80
dependency graph, 47
filters, 77
operation patterns, 78
outsourcing, 83-87

refactored, 65
refactoring, 65, 87-88
reset_password method, 65
two-step actions, 80-83
types, 53-54
design process, 50-55
components, 50-51
UML diagrams, 51
model, 47, 61-77
ActiveRDF, 70
ActiveRecord, 61-62
ActiveResource, 70
exceptions, 64-67
mapping, 67-68
objects, 62-64
polymorphic associations, 68-70
social networking prototype, 51-55
static HTML prototype, 53
testing, 41
view, 47, 70-77
GWT, 72
IDE, 71
partials, 73-77
variables, 70-71
web applications, 48-50
GUI, 49
modules, 251-252
classes, 202-203
codes, 199-200
monkey patching, 198, 210-222
aliasing methods, 221-222
definition, 210
eval method, 211-219
class Class; end, 215-216
class«Class, 218-219
class_eval, 213-215
instance_eval, 216-218
hazards, 220-221
techniques, 219-222
as temporary, 221
MooTools, 144
Mosaic, 8-10
NSCA, 8, 10
Mozilla, 140
MVC applications. See Model-Viewer-Controller
applications

303

Index

National Center for Supercomputer Applications

National Center for Supercomputer
Applications, 8
nesting
deep, 135
resource controllers, 135-136
Ruby on Rails, 133-136
route creation, 134-135
Netscape, 8
New York Times, 116
NeXT system, 6
““Nifty Corners’’ (Fulciniti), 39
NSCA Mosaic, 8, 10

0

objects, 38-39, 62-64
method_missing method, 241, 246-247
model hierarchies, 266-270

fields, 268-269

helper methods, 269-270

subclasses, 268-270
model, MVC, 62-64

associations, 62

hierarchy, 62

portable code, 64

user table stores, 63
repetition, 38-39

outsourcing, 83-87

data-related operations, 85-87
data loading, 85-86
security, 86-87

filters, 84-85
types, 84-85

validations, 87

overlaying, 97-103
non-HTML results, 99-100
RDF, 103
response_to method, 97-99
RSS, 101-103
XML, 100-101

RXML, 100-101

P

partial style, AJAX, 148-149, 157-159,
163-164

304

backward-compatible links, 163-164
buddy lists, 148
CRUD, 157-159
page fragments, 148
partials, 73-77
badge summary, 76
forms, 75
extended search, 75
search, 75
inline reference, 76
profile, 75
selection, 74-75
sparkline, 76-77
summaries, 76
badge, 76
row, 76
peepcode.com, 295
Perl, 13
code-first development, 13
plug-ins, 32
plural endpoint. See class-level endpoint
poignantguide.net, xxii
polymorphic associations, 68-70
POST method, 7
GET/POST paradigm, 81
process view, Ruby on Rails, 26-27
action invocation, 26
controller instantiation, 26
response, 27
routing, 26
view rendering, 27
procs, 177-179
blocks and, 180-181
callbacks, 194-195
lambda-created, 178

Professional Rich Internet Applications: AJAX

and Beyond (Wrox), 36
Prototype JavaScript library, 142-143
Prototype libraries, 31
proxy style, AJAX, 146-148
buddy lists, 146
meebo, 147-148
puppet style, AJAX, 149-151, 160-162
buddy lists, 151

Ruby on Rails

control limits, 150

meebo, 151

RJS, 160-161
PUT method, 8

Rails. See Ruby on Rails
Rails JavaScript (RJS), 31, 72-73,
160-162
application of, 162
Prototype libraries, 31
puppet style AJAX, 160-162
Script.aculo.us libraries, 31
The Rails Way (Hernandez), 22
Raymond, Scott, 102
RDF, 103
refactored controller method, 65, 87-88
HTTP, 123-126
Representation State Transfer (REST), xx,
41-42,116-138
development, 4, 118-119
HTTP, 119-128
APl web applications, 126-127
backward compatibility workaround,
120-122
CRUD, 119-120, 123
endpoints, 120-121
mapping, 122
networking, 127-128
refactoring, 123-126
resource controllers, 122
specification excerpts, 120
resources, 137-138
RESTful services, 41
Ruby on Rails, 30, 128-138
DRY philosophy, 128
nested resources, 133-136
primary keys, 136-137
router mapping, 129-130
scaffolding, 133
URIs, 134
URLs, 133
Semantic Web, 116
web services, 41-42
resources, 42, 116-118

reset_password method, 65
resource controllers, 122
nesting, 135-136
respond_to method, 97-99
REST. See Representation State Transfer
RESTful services, 41
RHTML, 101
RJS. See Rails JavaScript
routing, 24-26
API applications, 93-96
definition, 94-95
components, 94-95
Libs, 94
mapping resources, 129-133
anonymous, 129
automatically provided, 131
named, 129-133
shorthand, 132-133
naming methods, 94
options hash, 95
process view for Rails, 26
templates, 95
row summary, 76
RSpec, xxi, 279-295
additional features, 295
before/after statements, 287-288
development cycle, 279-280,
288-295
testing in, 293-295
implementing examples, 280-281
matchers, 28-287
custom, 285-287
methods, 283-285
writing process, 280-281
descriptions, 280
rspec.info/.com, 295
RSS, 101-103
Ruby on Rails, xix, 2, 21-44. See also API
applications, web; behavior-driven
development; code view, Ruby on Rails;

method(s); method_missing method; mixins;

Model-Viewer-Controller applications;
process view, Ruby on Rails; schema
development

aesthetics, 36-37

AJAX, 157-162

305

Index

Ruby on Rails (continued)

Ruby on Rails (continued) restraint, 37-38
APl web applications, xix, 90-113 DSL, 227-228
ActiveRecord, xxi, 25, 28-30 as ecosystem, 33-34
custom MIME type additions, framework, 22-27
103-105 code view, 25-26
documentation, 60-61 configuration, 23-25
metering, 105-109 database, 24
method calls, 96-97 directories, 23-24
overlaying, 97-103 process view, 26-27
routing, 93-96 routes, 24-25
service, 109-112 IRB, 172-173
SOAP, 109-110 language, 27-32, 72-73
URLs, 91-93, 95-96 ActiveRecord, 28-30
assumptions, 34-36 associations, 29
blocks, 169-195 HTML helper libraries, 30-31
ActiveRecord transactions, 190-192 Javascript, 31-32, 72-73
AOP, 187-189 plug-ins, 32
Array.each method, 170 REST-based routes, 30
callbacks, 194-195 RJS, 31-32
code wrapping, 172 symbols, 27
definition, 169-173 YAML, 23
dual-use functions, 194 loading data, 85-86
environmental effects, 184-186 methods, 173-177, 234-248, 250-251
filters, 189-190 Array.each, 237-240
HTML writing, 192-193 message paradigms, 176-177
iterations, 186-187 method_missing, 241-246
source environment influences, 182 scope, 175-176
XML, 193-194 mixing, 199, 202-203
code repetition, 38-40 extend with, 204-205
AOP, 38 modules into classes, 202-203
behaviors, 40 mixins, 198-210
objects, 38-39 module codes, 199-200
processes, 40 source code, 206-210
code view, 25-26 modules, 251-252
ActionPack, 25-26 monkey patching, 198, 210-222
ActiveRecord, 25 aliasing methods, 221-222
ActiveResource, 25 definition, 210
code-writing macros, 228-234 eval method, 211-219
define_method, 228-234 hazards, 220-221
constants, 249-250 techniques, 219-222
convention-based philosophies, 34-35 as temporary, 221
relaxed, 35 MVC applications, 32-33, 47-57
CRUD, 78-80 Agile software, 55-56
scaffold generators, 79-80 architecture, 49
development, 37-38, 43 components, 47-48, 50, 53-54
philosophy, 43 design process, 50-55

306

two-step actions

social networking prototype, 51-55
static HTML prototype, 53
testing, 41
web applications, 48-50

pluralization, 36

procs, 177-179
callbacks, 194-195
lambda-created, 178

REST, 30, 128-138

schema development, 254-273
custom getters, 272-273
hashes, 271-272
LAMP model, 254-256
list storage, 271-272
migrations, 256-260
model object hierarchies, 266-270
seeded data, 262-266
setters, 272-273
teams for, 260-262

security, 86-87

singleton class, 217

testing, 40-41

variables, 249-250

web services, 41-42
REST, 41-42
SOAP, 41
WS-*, 41-42
WSDL, 41

RXML, 100-101

S

Sapir-Worf Hypothesis, 282
scaffold generator, 79-80
Ruby on Rails, 133
schema development, 254-273
custom getters, 272-273
hashes, 271-272
LAMP model, 254-256
list storage, 271-272
migrations, 256-260
writing, 257-259
model object hierarchies, 266-270
fields, 268-269
helper methods, 269-270
subclasses, 268-270

seeded data, 262-266
large datasets, 264-266
medium datasets, 263-264
small datasets, 262-263
setters, 272-273
teams for, 260-262
script.aculo.us libraries, 31, 143
search forms, extended, 75
seeded data, 262-266
large datasets, 264-266
medium datasets, 263-264
small datasets, 262-263
Semantic Web, 4
REST, 116
service API applications, web, 109-112
definitions, 110
implementation, 111-112
structs, 112
setters, 272-273
singleton class, 217
singular endpoint. See instance-level endpoint
SOAP, 41
web APl applications, 109-110
sparkline partial, 76-77
SqQL, 2
structs, 112
stylesheets, 10

T

TABLE tag, 10
TDD. See test-driven development
test-driven development (TDD), 276
testing
MVC applications, 41
Ruby on Rails, 40-41
Thomas, Dave, 22
Tomcat, 23, 33
Tufte, Edward, 76
Tumblr, 127-128
TurboGears for Python, 22
two-step actions, 80-83
flash variables, 83
GET/POST paradigm, 81
object displays, 82-83
object mutations, 82-83

307

Index

UDlIs

U

UDIs. See Universal Document Identifiers
UML. See United Modeling Language
Uniform Resource Locators (URLs), 91-93,
95-96
concept v. function for, 92
design, 95-96
development of, 91-92
hierarchy, 93
Ruby on Rails, 133
United Modeling Language (UML), 51
Universal Document Identifiers (UDIs), 6
Universal Resource Identifier (URI),
117-118
Ruby on Rails, 134
Unix, 33
URI. See Universal Resource Identifier
URLSs. See Uniform Resource Locators
user table stores, 63

V

variables, 70-71
flash, 66
Ruby on Rails, 249-250
view, in MVC, 47, 70-77. See also partials
GWT, 72
IDE, 71
JavaScript, 72-73
partials, 73-77
badge summary, 76
forms, 75
inline reference, 76
profile, 75
row summary, 76
selection, 74-75
sparkline, 76-77
variables, 70-71

W

Weaving the Web (Berners-Lee), 5
web services, 41-42. See also World Wide
Web
REST, 41-42,116-118
resources, 42, 116-118

308

SOAP, 41
WS-*, 41-42
server capabilities, 42
WSDL, 41
websites
artofrails.com, 105
p2p.wrox.com, xxiii
peepcode.com, 295
poignantguide.net, xxii
rspec.info/.com, 295
Wrox.com, xxii
Why’s (poignant) Guide to Ruby, xxii
Wikipedia, 4
World Wide Web, 1-19. See also API
applications, web; Berners-Lee, Tim;
Hypertext Markup Language; Hypertext
Transfer Protocol; Model-Viewer-Controller
applications
1.0,3
2.0,3-4
3.0,3-4
API applications, xix, 90-113
ActiveRecord, xxi, 25, 28-30
custom MIME type additions,
103-105
documentation, 60-61
metering, 105-109
method calls, 96-97
overlaying, 97-103
routing, 93-96
service, 109-112
SOAP, 109-110
URLs, 91-93, 95-96
application development, 1-2, 12-18
CaGl, 12-13
browsers, 6
CSS, 2
development history, 5-18
HTML, 2, 4-6
page development, 9-10
HTTP, 5-8
development of, 7-8
JavaScript, 2
MVC applications, 48-50
Ruby on rails, 2
Semantic, 4, 9-12

Zope Content Management System

SQL, 2

UDIs, 6
Writely, 72
wrox.com, xxii
WSDL, 41

X

XHTML, 4
XLMHttpRequest, 141
XML. See Extensible Markup Language

Y

Yahoo! Ul (YUI), 143
mixins, 208-210

YAML, 23

YouTube, 2, 4

YUL. See Yahoo! Ul

y 4

Zope Content Management System, 211

309

Index

Programmer to Programmer™
l

[g ’_

lqlnlng ’ 5

Begmmng

i

nd g
™ Edition 3rd Edition

g

TNX |

swepueas a°om

SS PuUE JNIHX “¥

3 9 ++D jensip

=
02
- 2

Take your library
wherever you go.

Now you can access more than 200 complete Wrox books Find books on

online, wherever you happen to be! Every diagram, description, o ASP.NET e .NET
screen capture, and code sample is available with your * C#/C++ Open Source
C . . e Database e PHP/MySQL

subscription to the Wrox Reference Library. For answers when « General « SQL Server
e Java e Visual Basic

and where you need them, go to wrox.books24x7.com and
. I e Mac e Web
subscribe today! o Microsoft Office ¢ XML

wWww.wrox.com

	The Art of Rails
	About the Author
	Credits
	Acknowledgments
	Contents
	Introduction
	What Is the Art of Rails?
	Whom This Book Is For
	What’s Up With the Stories?
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Emergence(y) of the New Web
	Rails, Art, and the New Web
	Patient History: The World Wide Web
	Emergence of the New Web

	Chapter 2: The Rails Concept
	One Part Framework
	One Part Language
	Two Parts Mindset
	Summary

	Chapter 3: The Server as an Application
	Model-View-Controller: The Abbreviated Version
	MVC and the Web
	The MVC Design Process
	Managing the Application Lifecycle
	Summary

	Chapter 4: Getting the Most from M, V, and C
	The Best API Documentation Is Free
	The Model
	The View
	The Controller
	Summary

	Chapter 5: Beautiful Web APIs
	Two Big Ideas for Web APIs
	Routing
	Anatomy of the Web API Call
	Overlaying the API
	Adding Custom MIME Types
	API-Metering, the Rails Way
	What about SOAP/XML-RPC Services?
	Summary

	Chapter 6: Resources and REST
	A Web of Resources
	Representational State Transfer
	REST and Rails
	Summary

	Chapter 7: The Five Styles of AJAX
	The Big Secrets
	The Five Styles of AJAX
	AJAX as Just Another API
	Rails-Style AJAX
	Elegant Degradation
	Summary

	Chapter 8: Playing with Blocks
	The Block Mindset
	Comparing Methods, Procs, and Blocks
	The Big Scope Experiment
	Block Patterns, Blocks in Rails
	Summary

	Chapter 9: Mixins and Monkey Patching
	Mixins
	Monkey Patching
	Summary

	Chapter 10: Code That Writes Code (That Writes Code)
	Dynamic Code and DSLs Revisited
	Code-Writing Macros
	Calling Methods That Don’t Exist: Objects That Adapt to the Way You Use Them
	Reflection
	Summary

	Chapter 11: How I Learned to Stop Worrying and Love the Schema
	Bringing the Database into the Picture: The LAMP Stack
	Thinking in Migrations
	Team Schema Development
	Seeding Data for Production
	When a Database Isn’t Enough
	Summary

	Chapter 12: Behavior-Driven Development and RSpec
	Behavior-Driven Development
	RSpec: BDD for Ruby and Rails
	An Example Trip through the Development Cycle
	But Wait, There’s More
	Summary

	Index

